Math 402/571 Topology **Final Exam** January 4, 2016

1a) (4 pts) State Heine-Borel Theorem.

1b) (4 pts) Define homotopy equivalence of two spaces.

1c) (4 pts) Define triangulation of a surface.

1d) (4 pts) State the Classification Theorem for Compact Non-orientable Surfaces.

2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE.

2a) Image of a closed set under a continuous function is closed.

2b) Let S be a compact orientable surface. If $\chi(S)$ is given, then $\pi_1(S)$ can be computed.

2c) Fundamental group of any compact surface with boundary is a free group.

2d) Fundamental group determines the orientability for closed surfaces.

3) Let X be a metric space, and $A \subset X$.

Prove or give a counterexample for the following statements:

3a) (8 pts) If A is compact, then A is closed and bounded.

3b) (7 pts) If A is closed and bounded, then A is compact.

4) (12 pts) Let Σ_g^k be a compact, orientable surface of genus g with k boundary components. Let N_3^2 be the surface obtained from non-orientable surface N_3 by removing 2 open disks.

Find all possible (g, k) pairs so that $\Sigma_g^k \sim N_3^2$ (homotopy equivalent).

5) Determine the following surfaces according to the Classification Theorem, i.e. Find corresponding Σ_g^k or N_q^k . **5a)** (8 pts) S = 2 disks connected with 3 straight and 2 twisted strips.

5b) (8 pts) $T = \Sigma_2 \sharp N_4$

6a) (10 pts) Let $X = S^3 - \{3 \text{ points}\}.$

Is X simply connected? Is X contractible? Show your work. **6b)** (10 pts) Let $X = \mathbb{R}^3 - \{(0,0,0)\}$. Consider the \mathbb{Z} action on X as follows: For $n \in \mathbb{Z}$, let $\varphi_n(x, y, z) = 2^n(x, y, z)$. Find the orbit space $Y = X/\mathbb{Z}.$

7) (15 pts) Let $X = T^2 - \{p\}$, a torus with one point removed. Let $Y = X \times S^1$. Find $\pi_1(Y)$ and $\chi(Y)$.

2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Image of a closed set under a continuous function is closed.

2b) Let S be a compact orientable surface. If $\chi(S)$ is given, then $\pi_1(S)$ can be computed.

FALSE.

$$S = S_2$$
 $X(s) = X(T) = -2$
 $T = S_1^2$ $T_1(s) = \langle a_1 b_1, a_1, b_1 | (a_1 b_1) \rangle$
 $T_1(T) = 2 \times 2 \times 2$

2c) Fundamental group of any compact surface with boundary is a free group.

TRUE.
$$T_{1}(\xi_{5}^{k}) = \frac{2i2 - 2}{2g+k-1} \quad \xi_{5}^{k} \sim \frac{5\sqrt{5!} \sqrt{5!}}{2g+k-1}$$

2d) Fundamental group determines the orientability for closed surfaces.

TRUE.

$$T_{I_1}(S_g) = \langle \alpha_{I_1} \beta_{I_1} - \alpha_{g_1} \beta_{g_1} | [\alpha_{I_1} \beta_{I_1}] \rangle$$

 $T_{I_1}(N_g) = \langle \alpha_{I_1} \alpha_{I_1} - \alpha_{g_1} | \alpha_{I_1}^* \alpha_{I_1}^* - \alpha_{g_1}^* \rangle$

3) Let X be a metric space, and A ⊂ X.Prove or give a counterexample for the following statements:

3a) (8 pts) If A is compact, then A is closed and bounded.

TRUE. A closed: We will show A^c open. X metric year of Hardly
XEA^c => VAEA = UA, V^A sit. aEU^A
Consider covering
$$F_{X} = \{U^{A}_{A}\}$$
 sit. AEU^A
A compared => A E $\bigcup_{i=1}^{n} U^{A}_{A_{i}}$ => $V_{X} = \bigcap_{i=1}^{n} V^{A}_{X_{i}}$ open and $V_{X}A = \oint_{i=1}^{n}$
 $=) V_{X} \subseteq A^{c} => A^{c}$ open => A closed.
A banded. Fix $e_{0} \in A$. Consider covery $F = \{B_{A}(a_{i})\}$
A compared => The N A $\subseteq B_{X}(a_{i})$

3b) (7 pts) If A is closed and bounded, then A is compact.

FALSE:
$$X = [o_1 i] d$$
 discrete refrict
 $A = X$ = A is closed.
 $A = B_2(0) = bdd$
 $M = B_1(0) = bdd$
 $F = \left(B_{1/2}(x) \right) \times E[o_1 i]$ has a finite concig-
 H
 H
 K

4) (12 pts) Let Σ_g^k be a compact, orientable surface of genus g with k boundary components. Let N_3^2 be the surface obtained from non-orientable surface N_3 by removing 2 open disks.

Find all possible (g, k) pairs so that $\Sigma_g^k \sim N_3^2$ (homotopy equivalent).

5) Determine the following surfaces according to the Classification Theorem, i.e. Find corresponding Σ_g^k or N_q^k .

5a) (8 pts) S = 2 disks connected with 3 straight and 2 twisted strips.

$$\partial S_{-} \mathcal{I}$$
 computed
 S nonorientable
 $X(S) = -\mathcal{I}$
 $=\mathcal{I} S \simeq N_2^3$

5b) (8 pts) $T = \Sigma_2 \# N_4$ $T = \sum_2 \# N_4 = (\sum_{1} - \text{disk}) \cup (N_4 - \text{disk})$ $\downarrow \qquad \downarrow \qquad \downarrow$ $=) \qquad \chi(T) = -3 + (-) + 0 = -6$ T is closed sufface (no bdy) T is role orientable ($\exists N_4 \rightarrow M_5 \text{disk} \text{ bnd}$) $=) \qquad T = N_8$ 6a) (10 pts) Let $X = S^3 - \{3 \text{ points}\}.$

Is X simply connected? Is X contractible? Show your work.

$$S^{2} - \{1 pt\} \sim \mathbb{R}^{2} \cong \text{unit open ball}$$

$$X \sim O = S^{2} VS^{2}$$

$$=) X \text{ simply conn. (Von Karpon)}$$

$$b t X \text{ is not contractible}$$

$$X(x) = 2+2-1=3 \neq 1 = X(pt)$$

6b) (10 pts) Let $X = \mathbb{R}^3 - \{(0,0,0)\}$. Consider the \mathbb{Z} action on X as follows: For $n \in \mathbb{Z}$, let $\varphi_n(x, y, z) = 2^n(x, y, z)$. Find the orbit space $Y = X/\mathbb{Z}$.

$$Y = \frac{x}{2} =$$

7) (15 pts) Let $X = T^2 - \{p\}$, a torus with one point removed.

Let $Y = X \times S^1$. Find $\pi_1(Y)$ and $\chi(Y)$.