Math 402/571 Topology
 Final Exam
 January 4, 2016

1a) (4 pts) State Heine-Borel Theorem.
1b) (4 pts) Define homotopy equivalence of two spaces.
1c) (4 pts) Define triangulation of a surface.
1d) (4 pts) State the Classification Theorem for Compact Non-orientable Surfaces.
2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE.
2a) Image of a closed set under a continuous function is closed.
2b) Let S be a compact orientable surface. If $\chi(S)$ is given, then $\pi_{1}(S)$ can be computed.
2c) Fundamental group of any compact surface with boundary is a free group.
2d) Fundamental group determines the orientability for closed surfaces.
3) Let X be a metric space, and $A \subset X$.

Prove or give a counterexample for the following statements:
3a) (8 pts) If A is compact, then A is closed and bounded.
3b) (7 pts) If A is closed and bounded, then A is compact.
4) (12 pts) Let Σ_{g}^{k} be a compact, orientable surface of genus g with k boundary components. Let N_{3}^{2} be the surface obtained from non-orientable surface N_{3} by removing 2 open disks.

Find all possible (g, k) pairs so that $\Sigma_{g}^{k} \sim N_{3}^{2}$ (homotopy equivalent).
5) Determine the following surfaces according to the Classification Theorem, i.e. Find corresponding Σ_{g}^{k} or N_{q}^{k}.
5a) (8 pts) $S=2$ disks connected with 3 straight and 2 twisted strips.
5b) $(8 \mathrm{pts}) T=\Sigma_{2} \sharp N_{4}$
6a) $(10 \mathrm{pts})$ Let $X=S^{3}-\{3$ points $\}$.
Is X simply connected? Is X contractible? Show your work.
6b) (10 pts) Let $X=\mathbb{R}^{3}-\{(0,0,0)\}$. Consider the \mathbb{Z} action on X as follows: For $n \in \mathbb{Z}$, let $\varphi_{n}(x, y, z)=2^{n}(x, y, z)$. Find the orbit space $Y=X / \mathbb{Z}$.
7) (15 pts) Let $X=T^{2}-\{p\}$, a torus with one point removed.

Let $Y=X \times S^{1}$. Find $\pi_{1}(Y)$ and $\chi(Y)$.
2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are require for this problem.

2a) Image of a closed set under a continuous function is closed.

$$
\begin{aligned}
& \text { FAlse. } \\
& E_{x_{i}}: \underset{\text { adar }}{\arctan } \rightarrow(-\pi / 2 \pi)
\end{aligned}
$$

db) Let S be a compact orientable surface. If $\chi(S)$ is given, then $\pi_{1}(S)$ can be computed.

$$
\begin{aligned}
& \text { false. } \\
& S=\varepsilon_{2} \quad x(s)=x(T)=-2
\end{aligned}
$$

$$
\begin{aligned}
& \pi(T)=\operatorname{ly}=2 \times x
\end{aligned}
$$

2c) Fundamental group of any compact surface with boundary is a free group.

dd) Fundamental group determines the orientability for closed surfaces.

TruE.

$$
\begin{aligned}
& \pi_{1}\left(\varepsilon_{g}\right)=\left\langle a_{1} b_{1}-a_{g} b_{g}\right|\left[a_{1}, a_{2}[] \cdot\left[a_{g} b_{p}\right\rangle\right\rangle \\
& \pi_{1}\left(n_{p}\right)=\left\langle a_{1} a_{n}-a_{q} \mid a_{1}^{2} a_{i}^{2}-a_{q}\right\rangle
\end{aligned}
$$

3) Let X be a metric space, and $A \subset X$.

Prove or give a counterexample for the following statements:
Ba) (8 pts) If A is compact, then A is closed and bounded.
True. A close: We will show A^{c} open. X metric pace \Rightarrow Has bff
consider covering $f_{x}=\left\{U_{a}^{x}\right\}$ sit. $A \leq U_{x}^{a}$
A compare $\Rightarrow A \subseteq \bigcup_{i=1}^{n} u_{a_{i}}^{x} \Rightarrow V_{x}=\bigcap_{i=1}^{n} V_{x}^{a_{i}}$ open ad $V_{x} \cap A=\phi$

$$
\Rightarrow V_{x} \leq A^{c} \Rightarrow A^{c} \text { open } \Rightarrow A \text { coed. }
$$

A bond. Fix $a_{0} \in A$. consider covering $F=\left(B_{n}\left(a_{i}\right)\right)^{n \text { bell }}$
A compact $\Rightarrow \exists$ max $N \quad A \subseteq B_{N}\left(a_{i}\right)$
Bb) (7 pts) If A is closed and bounded, then A is compact.
FALSE: $\quad X=[0,1] \quad$ d discrete-efric.
$A=X \Rightarrow A$ is closed.

$$
A \subseteq B_{2}(0) \Rightarrow b d d
$$

bet A is not consul.

$$
\{x\}
$$

4) (12 pts) Let Σ_{g}^{k} be a compact, orientable surface of genus g with k boundary components. Let N_{3}^{2} be the surface obtained from non-orientable surface N_{3} by removing 2 open disks.

Find all possible (g, k) pairs so that $\Sigma_{g}^{k} \sim N_{3}^{2}$ (homotopy equivalent).

$$
\begin{aligned}
& N_{0}=\sum_{a_{j}}^{a_{3}} \sum_{a_{2}}^{a_{1}} \\
& N_{3}^{1}=\sum_{a}^{a} \overbrace{a 1}^{a} \sum_{a_{2}}^{a_{1}} \sim \\
& a_{a}
\end{aligned}
$$

$$
\begin{aligned}
& x\left(\sum_{g}^{k}\right)=2-2 g-k=-3 \\
& g=0 \Rightarrow k=5 \\
& g=1 \Rightarrow k=3 \\
& y=2 \Rightarrow k=1 \\
& 973 \Rightarrow x\left(k_{j}^{k}\right) \leqslant-4 \\
& \text { si ~ } 8 \\
& \text { pairs (} g, k \text {) } \\
& (0,3) \\
& (1,3) \\
& (2,1)
\end{aligned}
$$

5) Determine the following surfaces according to the Classification Theorem, ie. Find corresponding Σ_{g}^{k} or N_{q}^{k}.

5a) (8 pts) $S=2$ disks connected with 3 straight and 2 twisted strips.
$\partial S: 3$ corpus,
S nonorintable

$$
x(s)=-3
$$

$\Rightarrow S \simeq N_{2}^{3}$

$$
S_{\sim}
$$

$$
x(5)=2-5=-3
$$

Sb) $(8 \mathrm{pts}) T=\Sigma_{2} \sharp N_{4}$

$$
\begin{aligned}
& T=\Sigma_{2} \# N_{4}=\left(\Sigma_{2}-d i l\right) \cup\left(N_{4}-d i s\right) \\
& \Rightarrow \quad X(T)=-3+-3+0=-6
\end{aligned}
$$

T is coed siface (no boil)
T is not oriatable $\left(3 \mathrm{~N}_{4} \rightarrow\right.$ minions band $)$
$\Rightarrow \quad T=N_{8}$

Ga) (10 pts) Let $X=S^{3}-\{3$ points $\}$.
Is X simply connected? Is X contractible? Show your work.

$$
\left.S^{3}-\int 1 p t\right) \simeq \mathbb{R}^{3} \simeq \text { unit open ball }
$$

but X is not contractible

$$
X(x)=2+2-1=3 \neq 1=X(p t)
$$

bb) (10 pts) Let $X=\mathbb{R}^{3}-\{(0,0,0)\}$. Consider the \mathbb{Z} action on X as follows: For $n \in \mathbb{Z}$, let $\varphi_{n}(x, y, z)=2^{n}(x, y, z)$. Find the orbit space $Y=X / \mathbb{Z}$.

$$
\begin{aligned}
& \Omega=\int^{2} \times(1, r) \text { Suntans } d \text { do -an. } \\
& \text { sine } \varphi_{n}(\Omega)=\Omega_{n}
\end{aligned}
$$

$$
\Rightarrow \quad \cup \Omega_{n}=X
$$

$$
\Rightarrow \quad Y=X / R=\Omega / \sim=/_{2} /(x, 1) \sim(x, 2) \Rightarrow y=s_{x}^{2} S^{1}
$$

7) (15 pts) Let $X=T^{2}-\{p\}$, a torus with one point removed.

Let $Y=X \times S^{1}$. Find $\pi_{1}(Y)$ and $\chi(Y)$.

$$
y=x \times s^{\prime} \sim \infty \times s^{\prime}=
$$

$$
T_{1} \cup T_{2}^{2} / \alpha \sim \beta
$$

$$
\begin{aligned}
\Rightarrow \quad X(Y) & =X\left(T_{1}^{2}\right)+X\left(T_{2}^{2}\right)-X(\alpha) \\
& =0+0-0=0
\end{aligned}
$$

$$
\pi(y)=\pi_{1}\left(T_{1}\right)+\pi_{1}\left(T_{2} y_{1} / a_{1}=a_{2}=\left\langle a_{1} b_{1} \mid a_{1} a_{1} a_{2} a_{1}\right\rangle\right\rangle\left\langle a_{1} b_{1} \mid a_{1} h_{a} i_{i} i_{1}\right\rangle
$$ va kan

$$
=\left\langle a, b, b_{2} \mid a b_{1} a_{1}^{1} b_{1}^{1}, a a_{1} a_{1}^{\prime} i_{1}\right\rangle
$$

$a \in$ conte of $T_{1}(y)$
b_{1}, be does commence
T_{1} (4) 3 seeder: $a_{1} b_{1}$ ibo

$$
T_{1}(y)=\underset{b_{1} b}{(2 \times 2) \times 2}
$$

2 celdition $[a, b]$

$$
\left[a, m_{3}\right]
$$

