Math 402/571 Topology

Midterm 2

December 4, 2015

1a) (5 pts) Define the fundamental group, $\pi_1(X, p)$.

1b) (5 pts) Define deformation retraction.

1c) (5 pts) Define group action on a space.

1d) (5 pts) State Jordan curve theorem.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let X be <u>connected</u> and $p, q \in X$. Then $\pi_1(X, p) \simeq \pi_1(X, q)$.

2b) Any two simply connected spaces are homotopy equivalent.

2c) X and Y are contractible if and only if $X \times Y$ is contractible.

2d) Let $p \in X$ and $q \in Y$. If $X - \{p\}$ is homeomorphic to $Y - \{q\}$, then X is homotopy equivalent to Y.

3a) (10 pts) Show that S^2 and S^3 are not homeomorphic.

3b) (10 pts) Let T^2 be a torus, and $p, q \in T^2$ with $p \neq q$. Let X be the space obtained from T^2 by identifying p and q, i.e. $X = T^2/p \sim q$. Find $\pi_1(X)$.

4a) (10 pts) Let Σ_2 be genus 2 surface, and $p \in \Sigma_2$. Let $X = \Sigma_2 - \{p\}$. Let Y be the sphere S^2 removed k points. If $X \sim Y$, find k.

4b) (15 pts) Let T^2 be the torus in \mathbb{R}^3 with rotation axis z-axis. Define \mathbb{Z}_2 action on T^2 with $\varphi(x, y, z) = (-x, -y, -z)$. Find the orbit space, and compute its fundamental group.

5) Prove or give a counterexample for the following statements: 5a) (10 pts) Let D be the open unit disk in \mathbb{R}^2 . Then, any continuous map $f: D \to D$ has a fixed point, i.e. $\exists x \in D$ s.t. f(x) = x.

5b) (15 pts) If $X \cup Y$ is contractible, then X or Y is contractible.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let X be <u>connected</u> and $p, q \in X$. Then $\pi_1(X, p) \simeq \pi_1(X, q)$.

2b) Any two simply connected spaces are homotopy equivalent.

2c) X and Y are contractible if and only if $X \times Y$ is contractible.

2d)
$$X - \{p\} \simeq Y - \{q\} \Rightarrow X \sim Y.$$

i.e. Let $p \in X$ and $q \in Y$. If $X - \{p\}$ is homeomorphic to $Y - \{q\}$, then X is homotopy equivalent to Y.

3a) (10 pts) Show that S^2 and S^3 are not homeomorphic.

.

Assure
$$\exists P: S^{2} \exists S^{2}$$
 horeo.
 $p \in S^{2} q = P(p) \Rightarrow S^{2}(p) \cong S^{2}(q)$
 $p \in S^{2} q = P(p) \Rightarrow S^{2}(p) \cong S^{2}(q)$
 $p \in S^{2} q = P(p) \Rightarrow S^{2}(p) \cong S^{2}(q)$
 $p \in S^{2} q = not horeomyphic. $(p = \frac{1}{2}, \frac{1$$

3b) (10 pts) Let T^2 be a torus, and $p, q \in T^2$ with $p \neq q$. Let X be the space obtained from T^2 by identifying p and q, i.e. $X = T^2/p \sim q$. Find $\pi_1(X)$.

.

 $= (1 \times 1) - \tau_1 (7^{1}) + \tau_1 (5^{1}) = (1 \times 1) + 2$ X~ TVS' -)

4a) (10 pts) Let Σ_2 be genus 2 surface, and $p \in \Sigma_2$. Let $X = \Sigma_2 - \{p\}$. Let Y be the sphere S^2 removed k points. If $X \sim Y$, find k.

$$S^2-S pts \sim D^2-4 pts \longrightarrow OO = 1 = 1 = 5$$

4b) (15 pts) Let T^2 be the torus in \mathbb{R}^3 with rotation axis z-axis. Define \mathbb{Z}_2 action on T^2 with $\varphi(x, y, z) = (-x, -y, -z)$. Find the orbit space, and compute its fundamental group.

5) Prove or give a counterexample for the following statements:

5a) (10 pts) Let D be the open unit disk in \mathbb{R}^2 . Then, any continuous map $f: D \to D$ has a fixed point, i.e. $\exists x \in D$ s.t. f(x) = x.

' X and Y path connected. **5b**) (15 pts) If $X \cup Y$ is contractible, then X or Y is contractible.

FALSE: $X = S' \times D^2 = inside of torus$ $Y = IR^2 - X$ T_u(x) = S'T_u(Y) = S'XUY = IR² contractive