Math 402/571 Topology

Final

June 2, 2009

1a) (5 pts) Define topological equivalence of two topological spaces.

1b) (5 pts) Define continuity of a map between two topological spaces. Define continuity of a map between two metric spaces.

1c) (5 pts) Define identification space. Define identification topology.

1d) (5 pts) Define Euler Characteristics of a surface, $\chi(S)$.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Preimage of a compact set under a continuous function may not be compact.

2b) $D^2 \times D^2$ is a contractible space.

2c) Let X and Y be metric spaces. Then X is deformation retract of $X \times Y$. **2d**) Let S_1 and S_2 be closed orientable surfaces. If $\chi(S_1) = \chi(S_2)$ then S_1 is homeomorphic to S_2 .

3) Prove or give a counterexample for the following statements:

3a) (10 pts) Let X be a metric space and A be a subspace of X. If A is compact, then A is closed and bounded.

3b) (10 pts) Let X be a metric space and A be a subspace of X. If A is closed and bounded, then A is compact.

4) Let X and Y be the surfaces with boundary such that X is obtained by removing a small open disk from T^2 , and Y is obtained by removing 3 disjoint small open disks from S^2 .

4a) (10 pts) Show that X is homotopy equivalent to Y.

4b) (10 pts) Decide whether X is homeomorphic to Y or not.

5) (20 pts) Give an example of a simply connected space which is not contractible. Show your work.

6) (20 pts) Let $X = S^3 - S^1$. Compute $\pi_1(X)$.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Preimage of a compact set under a continuous function may not be compact.

And a second second of the second second

TRUE:
$$f: \mathbb{R} \to \bullet$$

:

2b) $D^2 \times D^2$ is a contractible space.

TRUE:
$$\hat{D} \times \hat{D} \sim \hat{D} \times \cdot \sim \cdot$$

2c) Let X and Y be metric spaces. Then X is deformation retract of $X \times Y$.

FALSE:
$$X = \cdot = \cdot = \cdot \times \times = \cdot \times = \cdot$$

2d) Let S_1 and S_2 be closed orientable surfaces. If $\chi(S_1) = \chi(S_2)$ then S_1 is homeomorphic to S_2 .

3) Prove or give a counterexample for the following statements:

4

3a) (10 pts) Let X be a metric space and A be a subspace of X. If A is compact, then A is closed and bounded.

Proof: A compact =) A banded.
Let
$$x_0 \in X$$
. Conside the converge $\{B_n(x_0)\}$ s. 1. $X = \bigcup B_n(x_0)$
A=1
Since A is compact, I finite cover =) $A \subseteq B_{NS}(x_0)$ for some
A compact =) A closed.
Claim: A^c is open. Let $y \in A^c$. Let $E_X = d(x_1y)$ $\forall x \in A$.
Then $\{B_{e_X}(x)\}$ is an open cover for A. Since A is compact,
I finite cover, $A = \bigcup_{i=1}^{n} B_{i_{X_i}}(x)$. Let $O = \bigcap_{i=1}^{n} B_{i_{X_i}}(y)$. Then O is open
Hence A^c is open. [Avote that we use the modric essentially]
3b) (10 pts) Let X be a metric space and A be a subspace of X. If A is
closed and bounded, then A is compact.
 $X = [O_1 I]$ $d = discrete metric $d(x_1y) = \begin{cases} 1 & x \neq y \\ 0 & x_{xy} \end{cases}$
 $A = X =)$ A closed and bounded ($A \in B_2(0)$)
However, A is not compact. $\begin{cases} B_1(x) \\ B_1(x) \\ 0 \end{cases}$ is an open
 $x \in [O_1 I]$ is not compact. $\begin{cases} B_1(x) \\ B_1(x) \\ 0 \end{cases}$ is an open
 $x \in [O_1 I]$ is an open cover.$

4) Let X and Y be the surfaces with boundary such that X is obtained by removing a small open disk from T^2 , and Y is obtained by removing 3 disjoint small open disks from S^2 .

4a) (10 pts) Show that X is homotopy equivalent to Y.

4b) (10 pts) Decide whether X is homeomorphic to Y or not.

X and Y are not homemorphic
since
$$\partial X = S' \longrightarrow \partial X \neq \partial Y = X \neq Y$$

 $\partial Y = S' \sqcup S' \sqcup S'$

5) (20 pts) Give an example of a simply connected space which is not contractible. Show your work.

If
$$S^{1}$$
 was contractible, then $S^{2} \sim \cdot$
We know that Euler choreotenistic X is honotogy
invariant. But $X(\cdot) = 1$
 $X(S^{1}) = 2 \neq 1 = -3$ $S^{2} \neq \cdot$
So S^{2} is simply connected by not contractible!

6) (20 pts) Let $X = S^3 - S^1$. Compute $\pi_1(X)$.

TT

$$S' = R^{2} U(\infty)$$

=) $S^{2}-S' = R^{2}-2-\alpha x i s$
 $S' = 2-\alpha x i s U(\infty)$

$$\int x R \sim S' \Rightarrow \int -S' \sim S' \Rightarrow T_1(S^2 - S') = T_1(S')$$

= Z
 $f(x,y_1,t_1) = (x_1,y_1+2)$