Math 402/571 Topology

Midterm 1

March 16, 2009

1a) (5 pts) Define continuity.

1b) (5 pts) Define compactness.

1c) (5 pts) Define connectedness.

1d) (5 pts) Define path connectedness.

2a) (10 pts) Give an example of a topological space (X, τ) which cannot be written as a metric space. Explain your answer.

2b) (10 pts) Show that metrizability (having a metric) is a topological property.

3) (15 pts) Prove or give a counterexample for the following statement: If $X \times Y \simeq X \times Z$ then $Y \simeq Z$.

4a) (10 pts) Show that a component is closed.

4b) (10 pts) Prove or give a counterexample for the following statement: A component in a topological space X is both open and closed subset of

X.

5) (15 pts) Prove or give a counterexample for the following statement: Let (X, d) be a metric space, and $A \subset X$. A is compact if and only if A is closed and bounded.

6) (20 pts) Show that if X is connected and locally path connected, then X is path connected.

MATH 402/571 Midtern I Soldions - Spring 09
1. Check book
2. a) X=E0113 T = Tindiscrete
Assure d is a redric on X inducing Tind. Then
$$d(0,1)=C>0$$

 $\Rightarrow B_{C}(0) \cap B_{C}(1)=\emptyset$ and $B_{C}(0)$; $B_{C}(1)$ are open in induced today
 $\Rightarrow B_{C}(0) \cap B_{C}(1)=\emptyset$ and $B_{C}(0)$; $B_{C}(1)$ are open in induced today
 $Tind=\{\emptyset, X\}=$ \exists The open set in (X, Tind) containing 0 but not
containing 1. So, $B_{C}(0)$ of Tind. This is a contradiction. \Box
(Alternatively, (X, Tind)) is not thousand ff. Housen all retric spaces are thought?)
2. b) $X \simeq Y$. if X has a metric = Y has a metric.
 (X, dx) given. $\Psi: X \rightarrow Y$ horeomorphism.
Define $d_{Y}(y_1, y_2) = d_X(\Psi(y_1), \Psi(y_2))$. Check the populies of redric
Show d_Y is a setric.
Then $\Psi(B_{C}(x)) = B_{C}(\Psi(y))$ dy induces the topology on Y. \Box
3. Counterexample: $X = [0,1]$ $Y = [0,1]$ $Z = [0,1]$
 $\left[\begin{array}{c} \left[\left[\left[\left[\right] \right] \right] \\ X \times Y \end{array}\right] = X \times Z$
4. a) Claim: C connected \Rightarrow C connected.
 $Richt: Otherwise, \exists nonempty proper subset A CC, where A is both open and
 $A = Anc$ is nonempty (C is domin C), and proper (AC is open) in C.
 $A = Anc$ is nonempty (C is domin C), and proper (AC is open) in C.
 $A = N = Ci \in T \subset C$ connected \Rightarrow C connected Z .$

•••

- #F