Math 402/571 Topology

Midterm 1
March 24, 2010

1) (5 pts each) For each of (a)-(d) below: If the proposition is true, write
TRUE. If the proposition is false, write FALSE. No explanations are re-
quired for this problem.

la)Let f : X — Y be continuous. If4 is compact iny’, thenf=1(A) is
compact inX.

1b)Let f : X — Y be a continuous bijection. IX is Hausdorff and”
is compact, therf is a homeomorphism.

1c)If X x Y is homeomorphic td x Z, thenY is homeomorphic t&.

1d) Let (X, 7) be a topological space, and létC X be both open and
closed inX. Then,A is a component oX'.

2) (20 pts) Show that every metric space is normal.
i.e. Let(X,d) be a metric space. i, B are two disjoint closed subsets of
X, then there are disjoint open sélg, Oz with A € O, andB C Og.

3) (20 pts) Give an example of two different topologigsand r, on the
same seiX such that identity map is not continuous in either direction.
ie. Iy : (X,m) — (X, ) andl, : (X, ) — (X, ) are not continuous.

4) Prove or give a counterexample for the following statements:
Let (X, d) be a metric space, atl C X.
4a) (10 pts) If A is compact, ther! is closed and bounded.
4b) (10 pts) If A is closed and bounded, thehis compact.

5) Prove or give a counterexample for the following statements:
Let (X, 7) be a topological space, andC X.
5a) (10 pts) If A is path connected, thefiis path connected.
5b) (10 pts) If A is connected, theA is connected.
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2) (20 pts) Show that every metric space is normal.
i.e. Let (X, d) be a metric space. If A, B are two disjoint closed subsets of
X, then there are disjoint open sets O4,0p with A C O4 and B C Op.
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3) (20 pts) Give an example of two different tbpologies 71 and 7, on the
same set X such that identity map [ is not continuous in either direction.
ie. Iy : (X,n1) = (X,m)and I, : (X, 72) — (X, n;) are not continuous.
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4) Prove or give a counterexample for the following statements:
Let (X, d) be a metric space, and A C X.

4a) (10 pts) If A is compact, then A is closéd and bounded.
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4b) (10 pts) If A is closed and bounded, then A is compact.
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5) Prove or give a counterexample for the following statements:
Let (X, ) be a topological space, and A C X.

Sa) (10 pts) If A is path connected, then A is path connected. ,

NOt 9 *Opb(aé\\+ sihe e, ' ‘Q'\:
A={ (61500) | Be (o {

A PD\J(\’\ Cmrwd-ec} N

A= Ul wwe 1 ffolﬂ) Fe(-
aud b o path omeded 1 (clox nofes )

5b) (10 pts) If A is connected, then A is connected.
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