Math 402/571 Topology

Midterm 1

March 24, 2010

1) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

1a) Let $f: X \to Y$ be continuous. If A is compact in Y, then $f^{-1}(A)$ is compact in X.

1b) Let $f : X \to Y$ be a continuous bijection. If X is Hausdorff and Y is compact, then f is a homeomorphism.

1c) If $X \times Y$ is homeomorphic to $X \times Z$, then Y is homeomorphic to Z. **1d)** Let (X, τ) be a topological space, and let $A \subset X$ be both open and

closed in X. Then, A is a component of X.

2) (20 pts) Show that every metric space is normal. i.e. Let (X, d) be a metric space. If A, B are two disjoint closed subsets of X, then there are disjoint open sets O_A, O_B with $A \subset O_A$ and $B \subset O_B$.

3) (20 pts) Give an example of two different topologies τ_1 and τ_2 on the same set X such that identity map I is not continuous in either direction. i.e. $I_1 : (X, \tau_1) \to (X, \tau_2)$ and $I_2 : (X, \tau_2) \to (X, \tau_1)$ are not continuous.

4) Prove or give a counterexample for the following statements:

Let (X, d) be a metric space, and $A \subset X$.

- **4a)** (10 pts) If A is compact, then A is closed and bounded.
- **4b)** (10 pts) If A is closed and bounded, then A is compact.

5) Prove or give a counterexample for the following statements: Let (X, τ) be a topological space, and $A \subset X$.

5a) (10 pts) If A is path connected, then \overline{A} is path connected.

5b) (10 pts) If A is connected, then \overline{A} is connected.

Math 402/571 Topology

KEY

Midterm 1

March 24, 2010

1) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

1a) Let $f : X \to Y$ be continuous. If A is compact in Y, then $f^{-1}(A)$ is compact in X.

1b) Let $f: X \to Y$ be a continuous bijection. If X is Hausdorff and Y is compact, then f is a homeomorphism.

1c) If $X \times Y$ is homeomorphic to $X \times Z$, then Y is homeomorphic to Z.

False. X=[0] XXY
$$\simeq$$
 Xx2
Y=[0] bt Y \neq 2
Z=[0]

1d) Let (X, τ) be a topological space, and let $A \subset X$ be both open and closed in X. Then, A is a component of X.

False. Need A connected, too,

$$E_X$$
: $X = \{0, 1, 2\}$
 $A = \{0, 1\}$ both open and closed.
but not a component!

2) (20 pts) Show that every metric space is normal.

i.e. Let (X, d) be a metric space. If A, B are two disjoint closed subsets of X, then there are disjoint open sets O_A, O_B with $A \subset O_A$ and $B \subset O_B$.

Let
$$Q_{A} = \{x \in X \mid d(x,A) \land d(x,B)\}$$

 $Q_{D} = \{x \in X \mid d(x,B) \land d(x,A)\}$
 $Then A \subseteq Q_{A} \land Since [d(x,A) = Q \in X \in \overline{A}]$
 $x \in A = J d(x,A) = Q \land d(x,B) = J \land E Q_{A}$

similarly BEOB

Claim:
$$O_A$$
 is open.
Since (X,d) metric space it is enough to show that
 $Yx \in O_A$ $\exists E_X > O \ D_{E_X}(X) \subseteq O_A$.
Let $x \in O_A$. Let $f_{\pm} d(x,B) - d(x,A) > O$

3) (20 pts) Give an example of two different topologies τ_1 and τ_2 on the same set X such that identity map I is not continuous in either direction. i.e. $I_1 : (X, \tau_1) \to (X, \tau_2)$ and $I_2 : (X, \tau_2) \to (X, \tau_1)$ are not continuous.

 $X = \{p, q\}$ $T_{1} = \{\phi, X, \{p\}\}$ $T_{2} = \{\phi, X, \{q\}\}$ $id : (X, T_{1}) \rightarrow (X, T_{2}) \text{ not } cts \text{ since}$ $\{q\} \text{ opm in}(X, T_{1}) = id^{-1}(\{q\}) = \{q\} \text{ is not } opm \text{ in } (X, T_{1})$ $id : (X, T_{2}) \rightarrow (X, T_{1}) \text{ not } cts, \text{ since}$ $\{p\} \text{ opm in}(X, T_{1}), \quad id^{-1}(\{p\}) = \{p\} \text{ is not } opm \text{ in } (X, T_{2}).$

4) Prove or give a counterexample for the following statements:

Let (X, d) be a metric space, and $A \subset X$.

4a) (10 pts) If A is compact, then A is closed and bounded.

Proof: X netric space =) X Heisdorff,
X Hausdorff + A compared =) A closed.
A banded since
$$F = (B_n(p))$$
 open coverly. for A.
There is a finite subcover =) JN $A \in B_N(p)$

. .

4b) (10 pts) If A is closed and bounded, then A is compact.

No.
$$X = [0,1]$$
 d discrete metric ($\forall x_{iy} d(x_{iy})=1$)
 $A = X = P$ A is closed U
A is bounded since $A \in B_2(0)$.
A is not compact since
 $F \in \{\{p\}\} \mid p \in [0,1]\}$ is a open covering
with no finite subcover!

5) Prove or give a counterexample for the following statements:

Let (X, τ) be a topological space, and $A \subset X$.

5a) (10 pts) If A is path connected, then \overline{A} is path connected.

No. A topologist sine curve in
$$\mathbb{R}^{1}$$
.
 $A = \left\{ (\partial_{1} \sin \theta) \right\} \quad \Theta \in \{0,1\}^{2}$
A path connected
 $\overline{A} = AUB$ where $D = \left\{ (0,1) \right\} + \left\{ \epsilon [-1,1] \right\}$
AUD is not path connected ! (class notes

5b) (10 pts) If A is connected, then \overline{A} is connected.

Yes. Assure \overline{A} is not connected. Then $\overline{J}YC\overline{A}$ $Y\neq \phi$ both open and closed in \overline{A} . $Y\neq \overline{A}$ Conside $Y \cap A$. $Y \cap A \neq \phi$ since A is densin \overline{A} and $Y \cap open in \overline{A}$, =) $Y \cap A \neq \phi$ $Y \cap A \neq A$ since $Y^{c} \cap open : \cap \overline{A}$ and $A \cap densinA =$) $Y^{c} \cap A \neq \phi$ =) $A \neq Y$. $Y \cap A$ is both open and closel in A by shapece topology . X. Since A is connected.