Math 405/538 Differential Geometry Final Exam

January 7, 2013

1a) (3 pts) Define torsion of a regular curve in \mathbb{R}^3 .

1b) (3 pts) Define Gaussian Curvature of a surface in \mathbb{R}^3 .

1c) (3 pts) State the Fundamental Theorem of Curves.

1d) (3 pts) State the Fundamental Theorem of Surfaces.

1e) (3 pts) State the Gauss-Bonnet Theorem.

2) (3 pts each) TRUE-FALSE.

a. For any given smooth functions $\kappa(s) > 0$ and $\tau(s)$, there exists a regular curve $\alpha(s)$ in \mathbb{R}^3 with curvature $\kappa(s)$ and torsion $\tau(s)$.

b. For any given smooth functions E, F, G and e, f, g, there exists a regular surface S with $I_S = Ex^2 + 2Fxy + Gy^2$ and $II_S = ex^2 + 2fy^2 + gy^2$.

c. Let L be a straight line in a surface S in \mathbb{R}^3 . Then, for any $p \in L$ the direction given by L is principal direction.

d. Let S be a disk in \mathbb{R}^3 with Gaussian curvature $K \leq 0$ everywhere. Then, any two different geodesics starting at the same point cannot meet again in S.

e. Let S_1 and S_2 are two surfaces which are tangent to each other along a curve α . If α is a geodesic of S_1 , then it is a geodesic of S_2 , too.

3a) (10 pts) Calculate the Frenet apparatus $(\mathbf{T}, \mathbf{N}, \mathbf{B}, \kappa, \tau)$ for

$$\alpha(t) = (\cos t, \sin t, t) \quad t \in (-1, 1)$$

3b. (6 pts) Let S be the cylinder $\{x^2 + y^2 = 1\}$ in \mathbb{R}^3 . Then, the curve above $\alpha \subset S$. Compute the normal curvature $\kappa_n(t)$ and geodesic curvature $\kappa_q(t)$ of α .

4) Let S be a surface of revolution with parametrization

$$\varphi(u, v) = (\phi(u) \cos v, \phi(u) \sin v, u)$$

4a. (8 pts) Find the principal directions, and compute the Gaussian curvature K(u, v) for any point $p = \varphi(u, v)$.

4b. (8 pts) Show that any meridian curve $(v = v_o)$ is a geodesic.

Show that a parallel curve $(u = u_o)$ is a geodesic if and only if $\varphi'(u_o) = 0$.

5) For c > 0, define the map $F : \mathbb{R}^3 \to \mathbb{R}^3$ with F(p) = 3p. **5a.** (8 pts) Let $\alpha(s)$ be a regular curve in \mathbb{R}^3 , and let $\widehat{\alpha}(s) = F(s)$. Compute $\widehat{\kappa}(s)$ and $\widehat{\tau}(s)$ in terms of $\kappa(s)$ and $\tau(s)$. **5b.** (8 pts) Let S be a regular surface, and let $\widehat{S} = F(S)$. Compute Gaussian curvature $\widehat{K}(p)$ in terms of K(p).

6a) (10 pts) Let S be a smooth, closed, orientable surface in \mathbb{R}^3 . Show that the Gauss Map $N : S \to S^2$ is surjective. **6b)** (8 pts) Let $K_+(p) = \max\{0, K(p)\}$. Show that $\int_S K_+ dA \ge 4\pi$.

7) (24 pts) Show that if all geodesics of a connected surface S are plane curves, then S is contained in a plane or a sphere.

[Hint: You can use the following steps.]

Step 1. If a geodesic is a plane curve, then it is a line of curvature.

Step 2. If all geodesics of a connected surface S are plane curves, then every point of S is an umbilical point (principal curvatures are same, $k_1 = k_2$). **Step 3.** If every point of S is an umbilical point, then S is contained in a plane or a sphere.

LEY.

2) (3 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

a. For any given smooth functions $\kappa(s) > 0$ and $\tau(s)$, there exists a regular curve $\alpha(s)$ in \mathbb{R}^3 with curvature $\kappa(s)$ and torsion $\tau(s)$.

b. For any given smooth functions E, F, G and e, f, g, there exists a regular surface S with $I_S = Ex^2 + 2Fxy + Gy^2$ and $II_S = ex^2 + 2fy^2 + gy^2$.

c. Let L be a straight line in a surface S in \mathbb{R}^3 . Then, for any $p \in L$ the direction given by L is principal direction.

d. Let S be a surface in \mathbb{R}^3 with Gaussian curvature $K \leq 0$ everywhere. Then, any two different geodesics starting at the same point cannot meet again in S.

e. Let S_1 and S_2 are two surfaces which are tangent to each other along a curve α . If α is a geodesic of S_1 , then it is a geodesic of S_2 , too.

TRUE: Kn//N => Kn//N ~

3a) (10 pts) Calculate the Frenet apparatus $(\mathbf{T},\mathbf{N},\mathbf{B},\kappa,\tau)$ for

 $\alpha(t) = (\cos t, \sin t, t) \quad t \in (-1, 1)$

Paraletate by or left:
$$d(s) \geq \langle \cos s, \sin s, 1 \rangle$$

 $\overrightarrow{T} = d'(s) \geq 1 \langle -\sin s, 1 \rangle$, $\langle \cos s, 1 \rangle$
 $d''(s) \geq 1 \langle -\cos s, -\sin s, 0 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$
 $f_{1} \langle 1 \rangle$
 $f_{2} \langle 1 \rangle$

3b. (6 pts) Let S be the cylinder $\{x^2 + y^2 = 1\}$ in \mathbb{R}^3 . Then, the curve above $\alpha \subset S$. Compute the normal curvature $\kappa_n(t)$ and geodesic curvature $\kappa_g(t)$ of α .

4) Let S be a surface of revolution with parametrization

$$\varphi(u,v) = (\phi(u)\cos v, \phi(u)\sin v, u)$$

4a. (8 pts) Find the principal directions, and compute the Gaussian curvature K(u, v) for any point $p = \varphi(u, v)$.

$$\begin{aligned} & \left\{ \begin{array}{l} \left\{ u = \left(\int \left\{ u \right\} \right) \left\{ u \right\} \right\} \right\} \\ & \left\{ \left\{ u = \left(\int \left\{ u \right\} \right\} \left\{ u \right\} \right\} \left\{ u \right\} \left\{ u \right\} \right\} \right\} \\ & \left\{ \left\{ u = \left(\int \left\{ u \right\} \right\} \left\{ u \right\} \left\{ u \right\} \left\{ u \right\} \right\} \left\{ u \right\} \right\} \\ & \left\{ \left\{ u = \left(\int \left\{ u \right\} \right\} \left\{ u \right\} \right\} \right\} \\ & \left\{ \left\{ u = \left(\int \left\{ u \right\} \right\} \left\{ u \right$$

$$\begin{aligned} & \left(\begin{array}{c} \left(u_{u_{1}} = \left\langle \phi'(o) u_{1} \phi'(s) u_{1} \phi'(s) \right\rangle \right) \\ & \left(u_{u_{1}} = \left\langle \phi'(s) u_{1} \phi'(s) u_{1} \phi'(s) \right\rangle \\ & \left(\left\langle u_{u_{1}} = \left\langle \phi'(s) u_{1} \phi'(s) u_{1} \phi'(s) \right\rangle \right) \\ & \left(\left\langle f = 0 \right\rangle \right) \\ & \left(\left\langle f =$$

$$V = \frac{eg}{\epsilon \epsilon \cdot F} = \beta \cdot \beta''$$

4b. (*i*) pts) Show that any meridian curve $(v = v_o)$ is a geodesic. Show that a parallel curve $(u = u_o)$ is a geodesic if and only if $\varphi'(u_o) = 0$.

d geodesic () Nd // Ns.

$$d_{u} = \langle \beta(u) \cos \varphi(u) \sin \varphi_{0}, u \rangle$$
 is a place come.
 $t = T_{d} L N_{d} \Rightarrow N_{d} // Ns$
 $d_{u} = \langle \beta(u_{0}) \cos \varphi_{0}, \beta(u_{0}) \sin \varphi_{1}, u_{0} \rangle \Rightarrow N_{d_{u}} = \langle -\cos \varphi_{1} - \sin \varphi_{1}, v \rangle$
 $N_{d_{u}} = N_{s} = \langle \cos \varphi_{1}, \sin \varphi_{1} - \beta'/\gamma \Rightarrow \beta'(u_{0}) = 0$.

5) For c > 0, define the map $F : \mathbb{R}^3 \to \mathbb{R}^3$ with F(p) = 3p.

5a. (8 pts) Let $\alpha(s)$ be a regular curve in \mathbb{R}^3 , and let $\widehat{\alpha}(s) = F(s)$. Compute $\widehat{\kappa}(s)$ and $\widehat{\tau}(s)$ in terms of $\kappa(s)$ and $\tau(s)$.

$$\begin{aligned} \hat{\chi}(s) = \Im \lambda(\frac{s}{2}) &=) \quad \hat{\chi}' = \chi'(\frac{s}{2}) \quad \chi''(s) = \frac{1}{2} \chi'(\frac{s}{2}) \\ =) \quad \hat{\chi}(s) = \frac{1}{2} \chi(\frac{s}{2}) \\ = \frac{1}{2} \chi(\frac{s}{2}) \\ \\ Sim \quad \hat{T}(s) = \frac{1}{2} \tau(\frac{s}{2}) \end{aligned}$$

5b. (8 pts) Let S be a regular surface, and let $\widehat{S} = F(S)$. Compute Gaussian curvature $\widehat{K}(p)$ in terms of K(p).

6a) (10 pts) Let S be a smooth, closed, orientable surface in \mathbb{R}^3 . Show that the Gauss Map $N: S \to S^2$ is surjective.

6b) (8 pts) Let $K_+(p) = \max\{0, K(p)\}$. Show that $\int_S K_+ dA \ge 4\pi$.

$$\int K_{+} dA = \int K_{-} dA \quad \text{where} \quad \int f = \left(p \in S \right) K(p) \right) \left(p \right)$$

$$\int K_{+} dA = \int K_{-} dA \quad \text{where} \quad \int f = \left(p \in S \right) K(p) \right) \left(p \right)$$

$$\int K_{+} dA = \int K_{-} dA \quad \text{where} \quad \int f = \left(p \in S \right) K(p) \right) \left(p \right)$$

$$\int f = \int f = \int$$

Bonus) (20 pts) Show that if all geodesics of a connected surface S are plane curves, then S is contained in a plane or a sphere.

[Hint: You can use the following steps.]

Step 1. If a geodesic is a plane curve, then it is a line of curvature.

Step 2. If all geodesics of a connected surface S are plane curves, then every point of S is an umbilical point (principal curvatures are same, $k_1 = k_2$).

Step 3. If every point of S is an umbilical point, then S is contained in a plane or a sphere.

Step J: Do Carmo, 3.2 Prop. 4 (Paye 147.)