Math 405/538 Differential Geometry Final Exam

January 7, 2013
1a) (3 pts) Define torsion of a regular curve in \mathbb{R}^{3}.
1b) (3 pts) Define Gaussian Curvature of a surface in \mathbb{R}^{3}.
1c) (3 pts) State the Fundamental Theorem of Curves.
1d) (3 pts) State the Fundamental Theorem of Surfaces.
1e) (3 pts) State the Gauss-Bonnet Theorem.
2) (3 pts each) TRUE-FALSE.
a. For any given smooth functions $\kappa(s)>0$ and $\tau(s)$, there exists a regular curve $\alpha(s)$ in \mathbb{R}^{3} with curvature $\kappa(s)$ and torsion $\tau(s)$.
b. For any given smooth functions E, F, G and e, f, g, there exists a regular surface S with $I_{S}=E x^{2}+2 F x y+G y^{2}$ and $I I_{S}=e x^{2}+2 f y^{2}+g y^{2}$.
c. Let L be a straight line in a surface S in \mathbf{R}^{3}. Then, for any $p \in L$ the direction given by L is principal direction.
d. Let S be a disk in \mathbf{R}^{3} with Gaussian curvature $K \leq 0$ everywhere. Then, any two different geodesics starting at the same point cannot meet again in S.
e. Let S_{1} and S_{2} are two surfaces which are tangent to each other along a curve α. If α is a geodesic of S_{1}, then it is a geodesic of S_{2}, too.

3a) (10 pts) Calculate the Frenet apparatus ($\mathbf{T}, \mathbf{N}, \mathbf{B}, \kappa, \tau$) for

$$
\alpha(t)=(\cos t, \sin t, t) \quad t \in(-1,1)
$$

3b. (6 pts) Let S be the cylinder $\left\{x^{2}+y^{2}=1\right\}$ in \mathbb{R}^{3}. Then, the curve above $\alpha \subset S$. Compute the normal curvature $\kappa_{n}(t)$ and geodesic curvature $\kappa_{g}(t)$ of α.
4) Let S be a surface of revolution with parametrization

$$
\varphi(u, v)=(\phi(u) \cos v, \phi(u) \sin v, u)
$$

4a. (8 pts) Find the principal directions, and compute the Gaussian curvature $K(u, v)$ for any point $p=\varphi(u, v)$.
4b. (8 pts) Show that any meridian curve ($v=v_{o}$) is a geodesic.
Show that a parallel curve $\left(u=u_{o}\right)$ is a geodesic if and only if $\varphi^{\prime}\left(u_{o}\right)=0$.
5) For $c>0$, define the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $F(p)=3 p$.

5a. (8 pts) Let $\alpha(s)$ be a regular curve in \mathbb{R}^{3}, and let $\widehat{\alpha}(s)=F(s)$. Compute $\widehat{\kappa}(s)$ and $\widehat{\tau}(s)$ in terms of $\kappa(s)$ and $\tau(s)$.

5b. (8 pts) Let S be a regular surface, and let $\widehat{S}=F(S)$. Compute Gaussian curvature $\widehat{K}(p)$ in terms of $K(p)$.

6a) (10 pts) Let S be a smooth, closed, orientable surface in \mathbb{R}^{3}. Show that the Gauss Map $N: S \rightarrow S^{2}$ is surjective.
6b) (8 pts) Let $K_{+}(p)=\max \{0, K(p)\}$. Show that $\int_{S} K_{+} d A \geq 4 \pi$.
7) (24 pts) Show that if all geodesics of a connected surface S are plane curves, then S is contained in a plane or a sphere.
[Hint: You can use the following steps.]
Step 1. If a geodesic is a plane curve, then it is a line of curvature.
Step 2. If all geodesics of a connected surface S are plane curves, then every point of S is an umbilical point (principal curvatures are same, $k_{1}=k_{2}$).
Step 3. If every point of S is an umbilical point, then S is contained in a plane or a sphere.
2) (3 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are require for this problem.
a. For any given smooth functions $\kappa(s)>0$ and $\tau(s)$, there exists a regular curve $\alpha(s)$ in \mathbb{R}^{3} with curvature $\kappa(s)$ and torsion $\tau(s)$.
TruE, Find, Than. of covers -exi)t-nes.
b. For any given smooth functions E, F, G and e, f, g, there exists a regular surface S with $I_{S}=E x^{2}+2 F x y+G y^{2}$ and $I I_{S}=e x^{2}+2 f y^{2}+g y^{2}$.
FAlse. Find Th- of fewer - Gasp Cobaxi EMus.
c. Let L be a straight line in a surface S in R^{3}. Then, for any $p \in L$ the direction given by L is principal direction.

$$
\text { False. } \quad S=\left\{x^{2}+y^{\prime}-t^{1}=1\right\} \text { is a ruled spue. }
$$

dike
d. Let S be a surface in R^{3} with Gaussian curvature $K \leq 0$ everywhere. Then, any two different geodesics starting at the same point cannot meet again in S.

TRUE

e. Let S_{1} and S_{2} are two surfaces which are tangent to each other along a curve α. If α is a geodesic of S_{1}, then it is a geodesic of S_{2}, too.

$$
\text { TRuE. } \quad k_{n}^{\prime} / / N \Rightarrow k_{n}^{\imath} \| N /
$$

$$
\begin{aligned}
& -\vec{T}= \\
& \vec{N}^{\prime}=-k \vec{T} \vec{N}^{\vec{N}}-t \vec{B} \\
& \vec{B}^{\prime}= \\
& T \vec{N}
\end{aligned}
$$

Ba) (10 pts) Calculate the Frenet apparatus (T, N, B, $\kappa, \tau)$ for

$$
\begin{aligned}
& \alpha(t)=(\cos t, \sin t, t) \quad t \in(-1,1) \\
& \text { Parentage by celogth: } \alpha(s)=\left\langle\cos \frac{1}{r_{2}}, \sin \frac{3}{\sqrt{2}}\left(\frac{5}{\sqrt{2}}\right\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
& D^{\prime}=\frac{1}{r_{2}} N \quad \Rightarrow \quad T=\frac{1}{r_{L}}
\end{aligned}
$$

3b. (6 pts) Let S be the cylinder $\left\{x^{2}+y^{2}=1\right\}$ in \mathbb{R}^{3}. Then, the curve above $\alpha \subset S$. Compute the normal curvature $\kappa_{n}(t)$ and geodesic curvature $\kappa_{g}(t)$ of α.

$$
\begin{aligned}
& \int_{i} \varphi\left(u_{1}\right)=\left\langle\left(\operatorname{mom}_{1} \sin 4, v\right) \quad \Rightarrow \quad \vec{N}: \varphi_{u x} \varphi_{v}=\langle\cos , \sin 4,0\rangle\right. \\
& \Rightarrow \quad \begin{aligned}
\alpha^{\prime \prime} / / \vec{N} \Rightarrow & k=k_{n} \quad \text { ad } \quad k_{g}=0 \\
& =\frac{1}{2}
\end{aligned}
\end{aligned}
$$

4) Let S be a surface of revolution with parametrization

$$
\varphi(u, v)=(\oint(u) \cos v, \emptyset(u) \sin v, u)
$$

Aa. (8 pts) Find the principal directions, and compute the Gaussian curvatare $K(u, v)$ for any point $p=\varphi(u, v)$.

$$
\begin{aligned}
& \varphi_{u}=\left\langle\phi^{\prime}(u) \cos v, \phi^{\prime}(u) \sin v, 1\right\rangle \\
& \left|\varphi_{n}\right|=\sqrt{1+\phi^{\prime}(u)^{2}} \quad E=1+\phi^{\prime}(4)^{2} \\
& \varphi=\left\langle\phi(n) \sin v_{1}-\phi(n)(\pi) v, 0\right\rangle \quad\left|\varphi_{1}\right|=|\phi(u)| \quad G=\theta(n)^{2} \\
& \varphi=\left\langle\phi(n) \sin v_{1}-\phi(n)(\pi) v, 0\right\rangle \quad\left|\varphi_{1}\right|=|\phi(u)| \quad G=\theta(n)^{2} \\
& \Rightarrow F=0 \\
& \varphi_{u} \times \varphi_{v}=\left\langle\phi(n)\left(o n v, \phi(n) \sin , 1-\phi^{\prime}(n) \phi(u)\right\rangle \Rightarrow N=\frac{\phi(n)}{\sqrt{1+\phi^{n}}}\left\langle\left(\cos , \sin v,-\phi^{\prime \prime}\right\rangle\right.\right. \\
& \begin{array}{l}
\varphi_{u u}=\left\langle\phi^{\prime \prime} \cos v, \phi^{\prime \prime} \sin v, 0\right\rangle \\
\varphi_{u v}=\left\langle-\phi^{\prime} \sin v, \phi^{\prime}(\infty) v, 0\right\rangle
\end{array} \Rightarrow \quad e=\frac{\phi^{\prime \prime} \cdot \phi^{\prime \prime}}{\sqrt{1+\phi^{\prime 2}}} \\
& \begin{array}{ll}
\varphi_{v V}=\langle-\phi \text { (ono, }-\phi \sin , 0\rangle & g=\frac{\phi^{L}}{\sqrt{1+\phi^{\prime 2}}}
\end{array} \\
& S_{p}=\left[\begin{array}{l}
E f \\
f
\end{array}\right]^{-1}\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right] \\
& \Rightarrow \varphi_{u} \text { ad } P_{v} \text { are eiganaters } \\
& K=\frac{e q-f^{2}}{E \theta \cdot f^{2}}=\phi \cdot \phi^{11} \\
& k_{1}=\ldots \quad k_{1}=\cdots
\end{aligned}
$$

Ab. (8) pts) Show that any meridian curve $\left(v=v_{o}\right)$ is a geodesic.
Show that a parallel curve $\left(u=u_{o}\right)$ is a geodesic if and only if $\varphi^{\prime}\left(u_{o}\right)=0$.
α geodenc $\Leftrightarrow \quad N_{\alpha} / / N_{s}$.
$\alpha_{u}=\left\langle\phi(n) \cos V_{0,} \phi(n) \sin v_{0}, 4\right)$ is a plat cure.

$$
\begin{aligned}
& +T_{\alpha} \perp N_{\alpha} \Rightarrow N_{\alpha} / / N_{s} \\
& \alpha_{v}=\left\langle\phi\left(u_{0}\right) \cos v_{1} \phi\left(u_{0}\right) \sin v, u_{0}\right) \Rightarrow N_{\alpha_{s}}=\left\langle-\left(\operatorname{sov},-\sin v_{1}, 0\right\rangle\right. \\
& N_{\alpha_{v}}=N_{s}=\left\langle\cos , \sin v_{1}-\phi^{\prime}\right\rangle \quad \Leftrightarrow \quad \phi^{\prime}\left(u_{0}\right)=0 .
\end{aligned}
$$

5) For $c>0$, define the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $F(p)=3 p$.

Sa. (8 pts) Let $\alpha(s)$ be a regular curve in \mathbb{R}^{3}, and let $\widehat{\alpha}(s)=F(s)$. Compute $\widehat{\kappa}(s)$ and $\widehat{\tau}(s)$ in terms of $\kappa(s)$ and $\tau(s)$.

$$
\begin{aligned}
& \hat{\alpha}(s)=3 \alpha\left(\frac{s}{\partial}\right) \quad \Rightarrow \quad \hat{\alpha}^{\prime}=\alpha^{\prime}\left(\frac{s}{\partial}\right) \quad \alpha^{\prime \prime}(s)=\frac{1}{\partial} \alpha^{\prime \prime}\left(\frac{s}{j}\right) \\
& \text { per. by oulth } \\
& \Rightarrow \quad \hat{k}(s)=\frac{1}{\jmath} K\left(\frac{s}{\jmath}\right) \\
& \operatorname{sim} \quad \hat{r}(s)=\frac{1}{3} T\left(\frac{s}{3}\right)
\end{aligned}
$$

Sb. (8 pts) Let S be a regular surface, and let $\widehat{S}=F(S)$. Compute Gaussian curvature $\widehat{K}(p)$ in terms of $K(p)$.

$$
\alpha \leq s \quad \Rightarrow \quad \operatorname{rod}=\hat{\alpha} \subseteq \hat{S}
$$

For on p_{1} let k_{1} ad h primicil communes with α_{1} ad α_{2} was in principe directions.
Dy dover $\hat{\alpha}_{1}$ ad \hat{i} ae priapus ditefores at $\hat{p}=f(p)$

$$
\Rightarrow \quad \hat{k}_{p}=\hat{k}_{1} \cdot \hat{k}_{=}=\frac{k_{1}}{2} \cdot \frac{k_{1}}{3}=\frac{k}{g} \quad \Rightarrow \quad \hat{k}_{\hat{p}}=\frac{k_{p}}{g}
$$

ba) (10 pts) Let S be a smooth, closed, orientable surface in \mathbb{R}^{3}. Show that the Gauss Map $N: S \rightarrow S^{2}$ is surjective.
Fix a unit valor $v \in S^{2}$. let P_{t}^{v} is the plane $v \cdot p=t$
 for + wy loge, $P_{t}^{v} \cap S=\phi$ $t y$, find the first point of contact. at po E S.

$$
\Rightarrow \quad T_{p_{0}} S=P_{t_{0}}^{V} \Rightarrow N\left(p_{0}\right)=V \quad B .
$$

bb) (8 pts) Let $K_{+}(p)=\max \{0, K(p)\}$. Show that $\int_{S} K_{+} d A \geq 4 \pi$.

$$
\begin{aligned}
& \int_{S^{+}} K_{+} d A=\int_{S^{+}} K d A \text { whee } S^{+}=\{p \in S \mid K(\rho) \geqslant 0\} \\
& \int_{S^{+}} K d A=\int_{S^{+}} \operatorname{det}(N N) d A=\left|N\left(S^{+}\right)\right|^{\text {now n }}
\end{aligned}
$$

Claim: $N: S^{+} \rightarrow S^{2}$ sujadive
By above proof, at the first point of contact po, S lies in one site of the tangent ploce $\Rightarrow k\left(p_{0}\right) \geqslant 0 . \Rightarrow N_{i}^{t} \rightarrow S^{1}$ onto

$$
\left.\Rightarrow \quad \mid M s^{+}\right)\left|\geqslant\left|s^{4}\right|=4 \pi\right.
$$

Bonus) (2 ${ }^{\prime}$ pts) Show that if all geodesics of a connected surface S are plane curves, then S is contained in a plane or a sphere.
[Hint: You can use the following steps.]
Step 1. If a geodesic is a plane curve, then it is a line of curvature.
Step 2. If all geodesics of a connected surface S are plane curves, then evaery point of S is an umbilical point (principal curvatures are same, $k_{1}=k_{2}$).

Step 3. If every point of S is an umbilical point, then S is contained in a plane or a sphere.

$$
\text { Step l: a geotere } \Rightarrow N_{\alpha}=N_{S} \text {. }
$$

$$
\text { since } \alpha \text { place crave } N^{\prime} \perp N \Rightarrow N^{\prime} / l T \Rightarrow N^{\prime}(\alpha(t))=\alpha(t) \alpha^{\prime}(t)
$$

$\Rightarrow \quad \alpha$ line of a metres (α eipurabor dol)

$$
\begin{aligned}
& \text { by Sty } 1 \\
& \Rightarrow \forall_{p} \in S \quad \forall v \in T_{p} S \quad v \text { is a live of cumblue } \Rightarrow k_{v}=k_{v^{\prime}} \quad b_{v, v^{\prime}} \text {. } \\
& \Rightarrow k_{1}=k_{i}=k_{p} \quad \Rightarrow \quad a_{1} y \rho \text { is umbilici. } \\
& \text { Step 3: } \\
& \text { Do Calm, } 3.2 \text { Prop. } 4 \text { (Page 14.) }
\end{aligned}
$$

