Math 405/538 Differential Geometry Midterm Exam 2

December 18, 2013

1a) (5 pts) Define covariant derivative.

1b) (5 pts) Define geodesic.

1c) (5 pts) State Gauss' Theorem (Theorem Egregium).

1d) (5 pts) Define holonomy.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let L be a straight line in a surface S in \mathbb{R}^3 . Then, L is a geodesic of S. **2b)** Let S_1 and S_2 be two isometric surfaces. Then the mean curvatures for corresponding points are same.

2c) Let S be a surface in \mathbb{R}^3 , which is homeomorphic to a torus. Then, there are points in S such that the Gaussian curvature is positive, negative and zero.

2d) Let S_1 and S_2 be isometric surfaces in \mathbb{R}^3 where the second fundamental forms are same. Then there is a rigid motion mapping S_1 onto S_2 .

3) (20 pts) Construct a surface S which contains a point p such that the principal curvatures at p are 4 and -3.

Compute the first and second fundamental form at p for S. Verify the Gaussian curvature at p.

4) (20 pts) Let S be a round sphere with radius 2 in \mathbb{R}^3 , and let $p \in S$.

Show that there exists a curve $\alpha_k \subset S$ through p where its curvature at p is equal to k if and only if $k \geq \frac{1}{2}$.

5a) (10 pts) Let α be regular curve in a surface S. Show that α is a line of curvature if and only if $N'(t) = \lambda(t)\alpha'(t)$ where $N(t) = N(\alpha(t))$ and $\lambda(t)$ is a differentiable function.

5b) (10 pts) Show that if $\alpha \subset S$ is both a line of curvature and a geodesic, then α is a plane curve.

6a) (13 pts) Show that the surfaces

 $\varphi(u, v) = (u \cos v, u \sin v, \log u) \quad \psi(u, v) = (u \cos v, u \sin v, v)$

have equal Gaussian curvature at the points $\varphi(u, v)$ and $\psi(u, v)$.

Hint: $K = \frac{eg - f^2}{EG - F^2}$ **6b**) (7 pts) Give a counterexample to the converse of the Gauss Theorem. Hint: Show $\varphi \circ \psi^{-1}$ is not an isometry.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let L be a straight line in a surface S in \mathbb{R}^3 . Then, L is a geodesic of S.

2b) Let S_1 and S_2 be two isometric surfaces. Then the mean curvatures for corresponding points are same.

2c) Let S be a surface in \mathbb{R}^3 , which is homeomorphic to a torus. Then, there are points in S such that the Gaussian curvature is positive, negative and zero.

2d) Let S_1 and S_2 be isometric surfaces in \mathbb{R}^3 where the second fundamental forms are same. Then there is a rigid motion mapping S_1 onto S_2 .

3) (20 pts) Construct a surface S which contains a point p such that the principal curvatures at p are 4 and -3. Compute the first and second fundamental form at p for S.

$$\begin{aligned} &\mathcal{E} = (x_{1}, y_{1}, x_{2}, y_{3}, y_{4}, y_{5}) \\ &\mathcal{E} = (x_{1}, y_{1}, x_{2}, y_{5}, y_{5}) \\ &\mathcal{E} = (x_{1}, y_{1}, x_{2}, y_{5}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{1}, y_{2}, y_{1}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{2}, y_{1}, y_{2}, y_{1}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{2}, y_{1}, y_{2}, y_{1}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{2}, y_{1}, y_{2}, y_{1}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{2}, y_{1}, y_{2}, y_{1}, y_{2}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{1}, y_{2}, y_{1}, y_{2}, y_{2}, y_{1}, y_{2}, y_{2}) \\ &\mathcal{E} = (x_{1}, y_{2}, y_{$$

4) (20 pts) Let S be a round sphere with radius 2 in \mathbb{R}^3 , and let $p \in S$. Show that there exists a curve $\alpha_k \subset S$ through p where its curvature at p is equal to k if and only if $k \geq \frac{1}{2}$.

=)
$$\alpha \in S$$
 and S is sphere =) $k_n = \frac{1}{2} \int \alpha \alpha \alpha d \leq S$
 $k = k_n^2 + k_n^2 = 2 k_n^2 / \frac{1}{2}$

$$E = \frac{1}{k_n} \sum_{k_n=1}^{\infty} \frac{1}{k_n} \sum_{k_n=1}^{\infty}$$

let du=SNPB where Poisthe place through p where normal Nos with at (N,No)

=) VK711 dh for coro= 1 El dh= SNP0 ~ 5a) (20 pts) Let α be regular curve in a surface S. Show that α is a line of curvature if and only if $N'(t) = \lambda(t)\alpha'(t)$ where $N(t) = N(\alpha(t))$ and $\lambda(t)$ is a differentiable function.

5b) Show that if $\alpha \subset S$ is both a line of curvature and a geodesic, then α is a plane curve.

When the pere by addyth,
d geodesic =)
$$kg=0$$
 f $k_1=k=$) $d^{11}//N$
=) $N_d=N_s$.
Normelajoure
live aljourne
=) $N'_s(t)=h(t)d'(t)$. (by above)
=) $N'_s(t)=h(t)d'(t)d'(t)$. (by above)
=) $N'_s(t)=h(t)d'(t)d'(t)d'(t)d'(t)d$

6a) (20 pts) Show that the surfaces

 $\varphi(u, v) = (u \cos v, u \sin v, \log u)$ $\psi(u, v) = (u \cos v, u \sin v, v)$ have equal Gaussian curvature at the points $\varphi(u, v)$ and $\psi(u, v)$.

6b) Give a counterexample to the converse of the Gauss Theorem. Hint: Show $\varphi \circ \psi^{-1}$ is not an isometry.

Gauss Theorem =)
$$S_1 \simeq S_1 = J$$
 Kn = Kn
isonetry
but coverse not true
 $K_{S_1} = K_{S_1} \neq J_1 \simeq S_1$