Math 405/538 Differential Geometry Midterm Exam 2

December 18, 2013

1a) (5 pts) Define covariant derivative.
1b) (5 pts) Define geodesic.
1c) (5 pts) State Gauss' Theorem (Theorem Egregium).
1d) (5 pts) Define holonomy.
2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let L be a straight line in a surface S in \mathbb{R}^{3}. Then, L is a geodesic of S. 2b) Let S_{1} and S_{2} be two isometric surfaces. Then the mean curvatures for corresponding points are same.
2c) Let S be a surface in \mathbb{R}^{3}, which is homeomorphic to a torus. Then, there are points in S such that the Gaussian curvature is positive, negative and zero.
2d) Let S_{1} and S_{2} be isometric surfaces in \mathbf{R}^{3} where the second fundamental forms are same. Then there is a rigid motion mapping S_{1} onto S_{2}.
3) (20 pts) Construct a surface S which contains a point p such that the principal curvatures at p are 4 and -3 .

Compute the first and second fundamental form at p for S.
Verify the Gaussian curvature at p.
4) $(20 \mathrm{pts})$ Let S be a round sphere with radius 2 in \mathbb{R}^{3}, and let $p \in S$.

Show that there exists a curve $\alpha_{k} \subset S$ through p where its curvature at p is equal to k if and only if $k \geq \frac{1}{2}$.
5a) (10 pts) Let α be regular curve in a surface S. Show that α is a line of curvature if and only if $N^{\prime}(t)=\lambda(t) \alpha^{\prime}(t)$ where $N(t)=N(\alpha(t))$ and $\lambda(t)$ is a differentiable function.
5b) (10 pts) Show that if $\alpha \subset S$ is both a line of curvature and a geodesic, then α is a plane curve.
6a) (13 pts) Show that the surfaces

$$
\varphi(u, v)=(u \cos v, u \sin v, \log u) \quad \psi(u, v)=(u \cos v, u \sin v, v)
$$

have equal Gaussian curvature at the points $\varphi(u, v)$ and $\psi(u, v)$.
Hint: $K=\frac{e g-f^{2}}{E G-F^{2}}$
$\mathbf{6 b})(7 \mathrm{pts})$ Give a counterexample to the converse of the Gauss Theorem.
Hint: Show $\varphi \circ \psi^{-1}$ is not an isometry.
2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are require for this problem.
aa) Let L be a straight line in a surface S in \mathbb{R}^{3}. Then, L is a geodesic of S.

$$
\text { TRUE. } \quad k=0 \Rightarrow k=0
$$

2b) Let S_{1} and S_{2} be two isometric surfaces. Then the mean curvatures for corresponding points are same.

FALSE: Place vS. Cylinder

2c) Let S be a surface in \mathbb{R}^{3}, which is homeomorphic to a torus. Then, there are points in S such that the Gaussian curvature is positive, negative and zero.

$$
\begin{aligned}
\text { TRUE: } \quad & \iint K d A=2 \pi X(S)=0 \\
& \Rightarrow \text { elliptic pt }\left(\begin{array}{c}
\text { corpechass) }) \\
\text { in } \mathbb{R}^{3}
\end{array} \quad \Rightarrow\right. \text { gyp pants a poe pts }
\end{aligned}
$$

2d) Let S_{1} and S_{2} be isometric surfaces in R^{3} where the second fundamental forms are same. Then there is a rigid motion mapping S_{1} onto S_{2}.

TruE:

$$
\begin{aligned}
& \text { I and II see } \Rightarrow 7 \text { widnation } \\
& \text { Find. Th. of surfaces. }
\end{aligned}
$$

3) (20 pts) Construct a surface S which contains a point p such that the principal curvatures at p are 4 and -3 . Compute the first and second fundamental form at p for S.

$$
\begin{aligned}
& \left.z=a x^{2}+b y^{2} \quad f=10,0,0\right) \quad P=\left(x, y, a x^{2}+b y^{2}\right) \\
& \varphi_{x}=\langle 1,0,2 a x\rangle \\
& \varphi_{y}=\left\langle 0_{1} 1,2 b y\right\rangle \\
& E=1+44^{2} x^{2} \\
& F=4 a b x y \\
& \Rightarrow I_{(0,0)}=x^{2}+y^{2} \\
& G=1+4 b^{2} \\
& \text { E=1 f:0 G: } 1 \\
& \varphi_{x x}=\langle 0,0,20 .\rangle \\
& e=\varphi_{x x} \cdot N=2 a \\
& \varphi_{y_{y}}=\langle 0,0,2 b\rangle \\
& \left.\Rightarrow \quad f=\varphi_{x, y} \cdot N=0 \Rightarrow \Pi_{(0,0)}=2 a x^{2}+2 b,\right)^{2} \\
& Y_{x y}=\langle 0,0,0\rangle \\
& N=\langle\cdot 2 a x,-24,1\rangle \\
& \text { La } a=2, b=-\frac{7}{2} \Rightarrow \mathbb{I}_{(0,0)}=4 x^{2}+3 y^{2} \\
& \Rightarrow \max \text { II } \int_{s^{\prime}}=4 \\
& \left.\min \text { II }\left.\right|_{S^{\prime}}: \cdot\right) \\
& \int: \quad\left(\begin{array}{c}
z=2 x^{2}-\frac{3}{2} y^{2} \\
D=(0,0,0)
\end{array}\right. \\
& I_{(0,0)}=x^{2}+y^{2} \\
& K=\frac{e g-j^{2}}{E \in-f^{2}} \\
& =\frac{-4 \cdot 3 \cdot 0}{1 \cdot 1 \cdot 0}=-12=4 .-3
\end{aligned}
$$

4) (20 pts) Let S be a round sphere with radius 2 in \mathbb{R}^{3}, and let $p \in S$.

Show that there exists a curve $\alpha_{k} \subset S$ through p where its curvature at p is equal to k if and only if $k \geq \frac{1}{2}$.
$\Rightarrow \quad \alpha \leq S$ and S sphere $\Rightarrow k_{n}=\frac{1}{2}$ for of $\alpha \leq S$

$$
k=k_{n}^{2}+k_{k g}^{2} \Rightarrow k \geqslant \frac{1}{2}
$$

$\left.E \underset{k_{n}}{\left(\frac{N}{\theta}\right.}\right)_{p \rightarrow N}$

$$
k_{n}=\frac{1}{2}=k \cos \theta \Rightarrow k=\frac{1}{2 \cos \theta}
$$

let $\quad A_{k}=\operatorname{Sn} P_{\theta}$ whee P_{θ} is the place through ρ who no nd H_{B}

$$
\text { with } \alpha\left(N_{1} N_{\theta}\right)
$$

$$
=\theta
$$

$$
\begin{gathered}
\Rightarrow \quad \forall k \geqslant 1 \frac{1}{2} \quad \alpha_{k} \quad f=\cos \theta=\frac{1}{2 k} \leq 1 \\
\alpha_{k}=\sin \theta
\end{gathered}
$$

5a) (20 pts) Let α be regular curve in a surface S. Show that α is a line of curvature if and only if $N^{\prime}(t)=\lambda(t) \alpha^{\prime}(t)$ where $N(t)=N(\alpha(t))$ and $\lambda(t)$ is a differentiable function.
N normed to S a line of armature \Rightarrow
$d^{\prime}(t)$ is principal direction $\forall t \Rightarrow$ ign venter for $d N$

$$
\Rightarrow \quad N^{\prime}(t)=d N\left(\alpha^{\prime}(t)\right)=\alpha(t) \alpha^{\prime}(t) \quad D
$$

bb) Show that if $\alpha \subset S$ is both a line of curvature and a geodesic, then α is a plane curve.
let α : per. by adyth.

$$
\alpha \text { geodesic } \Rightarrow k g=0 \quad f \quad l_{n}=k \Rightarrow \alpha^{\prime \prime} / / N
$$

$$
\Rightarrow \quad \vec{N}_{\alpha}=\vec{N}_{S} \text {. }
$$

live of cincture $\Rightarrow \quad N_{s}^{-1}(t)=h(t) \alpha^{\prime}(t)$. (by above)

$$
\Rightarrow \quad N_{\alpha}^{\prime}(t)=h(t) \alpha^{\prime}(t) .
$$

but $b y$ genet frame $N^{\prime}=k T+T B$

$$
\Rightarrow T=0 \Rightarrow \alpha \text { pare cure }
$$

6a) (20 pts) Show that the surfaces

$$
\varphi(u, v)=(u \cos v, u \sin v, \log u) \quad \psi(u, v)=(u \cos v, u \sin v, v)
$$

have equal Gaussian curvature at the points $\varphi(u, v)$ and $\psi(u, v)$.

$$
\begin{aligned}
& k=\frac{e g-g^{\prime}}{E t-f^{2}} \\
& \varphi_{u}=\left\langle\cos , \sin v, \frac{1}{u}\right\rangle \\
& E=\left|\varphi_{u}\right|^{\prime}=1+\frac{1}{u^{2}} \\
& \varphi_{v}=\langle-u \sin v, u(x) v, 0\rangle \\
& F=0 \\
& G=u^{2} \\
& \Rightarrow k=\frac{\operatorname{eg} \cdot f^{L}}{E G \cdot r^{2}} \\
& \varphi_{u n}=\left\langle 0,0,-\frac{1}{a^{2}}\right\rangle \\
& e=\varphi_{u n} \cdot N=\frac{-1}{n} \\
& f: u_{u v} \cdot N=0 \\
& \hat{g}: \varphi_{\text {vt }} N=u \\
& \varphi_{v v}=\left\langle-u(0) v,-u \sin ^{2} 0\right\rangle \\
& N=\langle-\cos v,-\sin v, u\rangle \\
& \text { smiley gopte } \\
& \psi(\text { inv }) \quad K=\frac{-1}{1+4^{2}}
\end{aligned}
$$

bb) Give a counterexample to the converse of the Gauss Theorem. Hint: Show $\varphi \circ \psi^{-1}$ is not an isometry.

Qu

$$
\begin{aligned}
& E_{\psi}=1+\frac{1}{v^{2}} \\
& E_{\psi}=1
\end{aligned}
$$

$$
\Rightarrow \quad I_{\varphi} \neq I_{\psi}
$$

Gave, Theorem $\Rightarrow \quad \begin{gathered}S_{1} \simeq S_{2} \\ \text { isometry }\end{gathered} \Rightarrow K_{S_{1}}=K_{a}$
net cowers out twa

$$
k_{s_{1}}=k_{s_{2}} \neq 2 s_{1} \simeq s_{2}
$$

