Persistence Homology for White Blood Cell Image Classification

Hamza Daruger

The University of Texas at Dallas

December 6, 2022

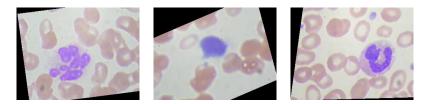
Hamza Daruger Persistence Homology for White Blood Cell Image Classification

伺 ト イヨ ト イヨト

Blood Cells - 3 types

- Red Blood Cells (erythrocytes)
- White Blood Cells (leukocytes)
 - Lymphocytes
 - Monocytes
 - Eosinophils
 - Neutrophils
 - Basophils
- Platelets (thrombocytes)

Why?


- Changes in WBCs can indicate health
- Making WBC tests more efficient

4 classes: ${\sim}3000$ for each class after augmentation

- Lymphocytes 33 images
- Monocytes 19 images
- Neutrophils 208 images
- Eosinophils 86 images

Subsets used in experiment: 2 settings, 500 augmented images for each class with 80:20 train test split

- Binary Eosinophils, Neutrophils
- Multi Eosinophils, Neutrophils, Lymphocytes

Figure: Eosinophil, Lymphocyte, Neutrophil images, respectively

< ∃ >

- Take RGB images and compress them into single channel images
- ② Create Cubical Complexes for the images using Giotta-tda
- Oreate persistence diagrams through sublevel or superlevel filtration
- Vectorize persistence diagrams into its Betti Number for each homology dimension
- Feed Betti Number vectors into XGBoost Classification Model for training

• • = • • = •

Betti Numbers (greyscale)

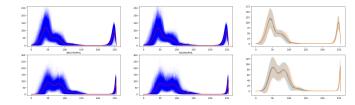


Figure: Binary

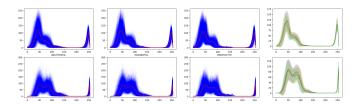


Figure: Multi

Hamza Daruger Persistence Homology for White Blood Cell Image Classification

э

Betti Numbers(green)

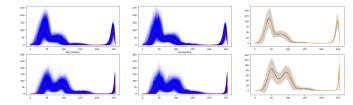


Figure: Binary

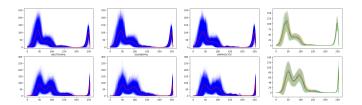


Figure: Multi

Hamza Daruger Persistence Homology for White Blood Cell Image Classification

э

Betti Curve:

• n_bins: 380 (green channel images), 420 (greyscale images) XGBoost Classifier

- max_depth: 4
- gamma: 1
- learning_rate: 0.05 (binary), 0.08 (multi)
- n_estimators: 70 (binary), 90 (multi)

Binary: Eosinophil, Neutrophil

96.5% accuracy, superlevel filtration, green image channel 95.4% accuracy, superlevel filtration, greyscale images

Binary: Eosinophil, Neutrophil, Lymphocyte

96.0% accuracy, superlevel filtration, green image channel 90.7% accuracy, superlevel filtration, greyscale images

同 ト イ ヨ ト イ ヨ ト

Reference	Method	Accuracy
(Habibzadeh et al., 2018)	Inception and ResNet	99%
(Bani-Hani et al., 2018)	GA-optimized CNN	91%
(Liang et al., 2018)	Hybrid CNN, Transfer learning, RNN, and LSTM	90.8%
(Sharma et al., 2019)	CNN and Transfer learning	87%
(Diouf et al., 2019)	ANN and CNN	97.7%
(Ghosh & Bhattacharya, 2020)	CNN and FCN on noise-free cell images	98.4%
(Ma et al., 2020)	DC-GAN, ResNet, and CNN	91.7%
(Banik et al., 2020)	CNN	96%

Table: Comparison of DL models trained on BCCD

from: Leukocytes Image Classification Using Optimized Convolutional Neural Networks (2022)

伺 ト イヨ ト イヨト