Flow-based Identification of Botnet Traffic by
Mining Multiple Log Files

Mohammad M. Masud!, Tzhseen Al-khateeb?, Latifur Khan?
Bhavani Thuraisingham®, Kevin W. Hamlen®
Department of Computer Science, The University of Texas at Dallas
Richardson, TX 75080, USA
{lmehedy, %t ahseen, Elkhan}@utdallas .edu

{*bhavani.thuraisingham, *hamlen}@futdallas.edu

Abstract—RBotnet detection and disruption has heen a major
research topic in recent years, One effective technique for hotnet
detection is to identify Command and Control (C&C) traffic,
which is sent from a C&C center to infected hosts (hots) to
control the hots. If this traffic can be detected, hoth the C&C
center and the bots it controls can he detected and the hotnet
can be disrupted. We propose a multiple log-file based temporal
correlation technique for detecting C&C traffic. Our main
assumption is that bots respond much faster than humans. By
temporally correlating two host-based log files, we are able to
detect this property and thereby detect bot activity in a host
machine. In our experiments we apply this technique to log
files produced by tepdump and exedump, which record all
incoming and outgoing petwork packets, and the start times
of application executions at the host machine, respectively. We
apply data mining to extract relevant features from these log
files and detect C&C traffic. Our experimental results validate
our assumption and show hetter overall performance when
compared to other recently published techniques.

Keywords- Malware, botnet, intrusion detection, data mining,

I. INTRODUCTION

Botnets are emerging as “the biggest threat facing the in-
ternet today” [1] because of their enormous volume and sheer
power. Botnets containing thousands of bots (compromised
hosts) have been tracked by several different researchers [2],
[3]. Bots in these botnets are controlled from a Command
and Control (C&C) center, operated by a human botmaster
or botherder. The botmaster can instruct these bots to recruit
new bots, launch coordinated DDoS attack against specific
hosts, steal sensitive information from infected machines, send
mass spam emails, and so on. Fig. 1 illustrates a typical botnet
architecture.

Numerous researchers are working hard to combat this
threat and have proposed various solutions [4], [5], [2]. One
major research direction attempts to detect the C&C center
and disable it, preventing the botmaster from controlling the
botnet. Locating the C&C center requires identifying the
traffic exchanged between it and the bots. Our work adopts
this approach by using a data mining based technique to
identify temporal correlations between multiple log files. We
maintain two different log files for each host machine: (i) a
network packet trace or tcpdump, and (ii) an application
execution trace or exedump. The tepdump log file records

978-1-4244-2313-2/08/$25.00 ©2008 IEEE

all network packets that are sent/received by the host, and
the exedump log file records the start times of application
program executions on the host machine. Our main assumption
is that bots respond to commands much faster than humans do.
Thus, the command latency (i.e., the time between receiving a
command and taking actions) should be much lower, and this
should be reflected in the tcpdump and exedump log files.

Bot commands that have an observable effect upon the log
files we consider can be grouped into three categories: those
that solicit a response from the bot to the botmaster, those that
cause the bot to launch an application on the infected host
machine, and those that prompt the bot to communicate with
some other host (e.g., a victim machine or a code server). This
botnet command categorization strategy is explained in more
detail in Section III. We apply data mining to learn temporal
correlations between an incoming packet and (i) an outgoing
packet, (ii) a new outgoing connection, or (iii) an application
startup. Any incoming packet correlated with one of these
logged events is considered a possible botnet command packet.
Our approach is flow-based because rather than classifying
a single packet as C&C or normal traffic, we classify an
entire flow (or connection) to/from a host as C&C or normal.
This makes the detection process more robust and effective.
Our system is first trained with log files obtained from clean
hosts and hosts infected with a known bot, then tested with
logs collected from other hosts. The testing methodology is
explained in detail in Section IV.

Our technique is different from other botnet detection
techniques [5], [6], [2] in two ways. First, we do not impose
any restriction on the communication protocol. Our approach
should therefore also work with C&C protocols other than
those that use IRC as long as the C&C traffic possesses the
observable characteristics defined above. Second, we do not
rely on command string matching. Thus, our method should
work even if the C&C payloads are not available.

Our work makes two main contributions to botnet detection
research. First, we introduce multiple log correlation for C&C
traffic detection. We believe this idea could be successfully
extended to additional application-level logs such as those that
track process/service execution, memory/CPU utilization, and
disk accesses. Second, we have proposed a way to classify
botmaster commands into different categories, and we show

200

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

Code Server Botraaster IRC Server
‘—
Upload IRC
C&C/ traffic
Update/
Dovnload
i
Attack Bot machines
=
Vulnerable marhines
Fig. 1. A typical IRC-based botnet architecture

how to utilize these command characteristics to detect C&C
traffic. An empirical comparison of our technique with another
recent approach [5] shows that our strategy is more robust in
detecting real C&C traffic.

The rest of the paper is organized as follows: Section
II discusses related work on botnet detection. Section 1II
discusses our system setup and data collection process. Section
IV explains our botnet detection architecture and discusses
the details of the detection process. Section V evaluates our
system. Finally, Section VI concludes by summarizing our
work and suggesting future research directions.

II. RELATED WORK

Botnet defenses are being approached from at least three
major perspectives: analysis, tracking, and detection. Barford
and Yegneswaran [7] present a comprehensive analysis of
several botnet codebases and discuss various possible defense
strategies that include both reactive and proactive approaches.
Grizzard et al. [4] analyze botnets that communicate using
peer-to-peer networking protocols, concluding that existing
defense techniques that assume a single, centralized C&C
center are insufficient to counter these decentralized botnets.

Freiling et al. [3] summarize a general botnet-tracking
methodology for manually identifying and dismantling ma-
licious C&C centers. Rajab et al. [2] put this into practice
for a specific IRC protocol. They first capture bot malware
using a honeynet and related techniques. Captured malware
is next executed in a controlled environment to identify the
commands that the bot can receive and execute. Finally, drone
machines are deployed that track botnet activity by mimicking
the captured bots to monitor and communicate with the C&C
server. Dagon et al. [8] track botnet activity as related to
geographic region and time zone over a six month period. They
conclude that botnet defenses such as those described above
can be more strategically deployed if they take into account
the diurnal cycle of typical botnet propagation patterns.

Our research presented in this article is a detection tech-
nique. Cooke et al. [9] discuss various botnet detection tech-
niques and their relative merits. They conclude that monitoring

C&C payloads directly does not typically suffice as a botnet-
detection strategy because there are no simple characteristics
of this content that reliably distinguish C&C traffic from
normal traffic. However, Goebel and Holz [6] show that
botnets that communicate using IRC can often be identified by
their use of unusual IRC channels and IRC user nicknames.
Livadas et al. [5] use additional features including packet
size, flow duration, and bandwidth. Their technique is a two-
stage process that first distinguishes IRC flows from non-
IRC flows, and then distinguishes C&C traffic from normal
IRC flows. While these are effective detection techniques for
some botnets, they are specific to IRC-based C&C mech-
anisms and require access to payload content for accurate
analysis and detection. In contrast, our method does not
require access to botnet payloads and is not specific to any
particular botnet communication infrastructure. Karasaridis et
al. [10] consider botnet detection from an ISP or network
administrator’s perspective. They apply statistical properties
of C&C fraffic to mine large collections of network traffic
for botnet activity. Our work focuses on detection from the
perspective of individual host machines rather than ISP’s.

III. BOT TRAFFIC ANALYSIS

In this section we describe our system setup, data collection
process, and approach to categorizing bot commands.

A, System setup

We tested our approach on two different IRC-based bots—
SDBot version 05a [11] and RBot version 0.5.1 [12]. The
testing platform consisted of five virtual machines running
atop a Windows XP host operating system. The host hardware
consisted of an Intel Pentium-IV 3.2GHz dual core processor
with 2GB RAM and 150GB Hard Disk. Each virtual machine
ran Windows XP with 256 MB virtual RAM and 8GB virtual
Hard Disk space. The five virtual machines played the role of
a botmaster, a bot, an IRC server, a victim, and a code server,
respectively. As with a typical IRC-based botnet, the IRC
server served as the C&C center through which the botmaster
issued commands to control the bot. The IRC server we used
was the latest version of Unreal IRCd Daemon [13], and
the botmaster’s IRC chat client was MIRC. The code server
ran Apache Tomcat, and contained different versions of bot
malware code and other executables. The victim machine was
a normal Windows XP machine. During the experiment the
botmaster instructed the bot to target the victim machine with
udp and ping attacks. All five machines were interconnected
in an isolated network as illustrated in Fig. 1.

B. Data collection

Data collection was performed in three steps. First, we
implemented a client for the botmaster that automatically
sent all possible commands to the bot. Second, we ran Win-
dump [14] to generate a tepdump log file, and ran our own
implementation of a process tracer to generate a exedump
log file. Third, we ran each bot separately on a fresh virtual
machine, collected the resulting traces from the log files, and

201

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SDBOT AND RBOT COMMAND CHARACTERISTICS

Observable effects Commands

addalias about execute udp cmd downleoad
Bot-app X X v X v v
Bot-response % v b3 v v v
Bot-other X X 'Y v ® v

then deleted the infected virtual machine. Traces were also
collected from some uninfected machines connected to the
internet. Each trace spanned a 12-hour period. The t cpdump
traces amounted to about 3GB in total. Finally, these traces
were used for training and testing.

C. Bot command categorization

Not all bot commands have an observable effect upon the
log files we consider. We say that a command is observable
if it matches one or more of the following criteria:

1) Bot-response: The command solicits a reply message
from the bot to the C&C center. This reply is logged
in the tepdump. For example, the SDbot commands
about and sysinfo are observable according to this
criterion.

Bot-app: The command causes the bot to launch an
executable application on the infected host machine. The
application start event will be logged in the exedump.
The execute command from SDbot is an example of
such a command.

Bot-other: The command causes the bot to contact
some host other than the C&C center. For example, the
command might instruct the bot to send UDP packets as
part of a DoS attack, send spam emails to other hosts,
or download new versions of bot malware from a code
server. Such events are logged in the tepdump.

Some of the SDBot and RBot commands are listed in Table
| and categorized using the above mentioned criteria. For a
comprehensive description of these commands, please refer
to [L1], [12].

3)

IV. ARCHITECTURE

Data collected via the procedure described in Section Il was
used for training and testing using the architecture illustrated
in Fig. 2. For training, we first label each flow—ie., each
(ip:port, ip":port’) pair—as a bot flow (conversation between
a bot and its C&C center), or a normal flow (all other con-
nections). Second, we compute several packet-level features
(detailed below) for each incoming packet. Third, we compute
flow-level features for each flow by aggregating the packet-
level features. Finally, these flow-level features are used to
train a classifier and obtain a classification model. For testing,
we take an unlabeled flow and compute its flow-level features
in the same way. Then we test the feature values against the
classification model and label it a normal flow or a bot flow.
The feature extraction process is explained next.

A. Fearure Extraction

First we discuss the packet-level features, and then discuss
the flow-level features. The intuitive idea behind these features
1s that human response to a command/request (e.g., a request
to send a file or execute an application by his peer) should be
much slower than a bot. In what follows, we refer to a packet
as incoming if its destination is the host being monitored, and
as outgoing if it originates from the monitored host.

a) Packer-level features.: The packet-level features we
consider can be summarized as follows:

« Bot-response (BR) (boolean-valued): An incoming
packet possesses this feature if it originated from some
ip:port and there is an outgoing packet to the same
ip:port within 100 ms of arrival of the incoming packet.
This indicates that it is a potential command packet. The
100 ms threshold has been determined by our observation
of the bots. We will refer to these incoming packets as
BR packes.

« BRtime (real-valued): This feature records the time
difference between a BR packet and its corresponding
outgoing packet. This is an important characteristic of a
bot.

« BRsize (real-valued): This feature records the length (in
KB) of a BR packet. We observe that command packets
typically have lengths of 1KB or less, whereas normal
packets have unbounded size.

« Bot-other (BO) (boolean-valued): An incoming packet
possesses this feature if it originated from some #p: port
and there is an oulgoing packet to some ip’:port’ within
200 ms of the arrival of the incoming packet, where p" #
ip. This is also a potential command packet. The 200 ms
threshold has also been determined by our observation of
the bots. We will refer to these incoming packets as BO
packets.

« BODestMatch (boolean-valued): A BO packet possesses
this feature if outgoing destination ip’ is found in its
payload. This indicates that the BO packet is possibly a
command packet that tells the bot to establish connection
with host p’,

« BOtime (real-valued): This feature records the time
difference between a BO packet and its corresponding
outgoing packet. This is also an important characteristic
of a bot.

« Bot-App (BA) (boolean-valued): An incoming packet
possesses this feature if an application starts on the host
machine within 3 seconds of arrival of the incoming
packet. This indicates that it is potentially command
packet that instructs the bot to run an application. The 3

202

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

Botret traffic detection system

Conrelation Training
| & Feature Lol with .
! | extraction classifier |
| i
; , : - !
i ervironment —bijxed'umpl) gcu;re]amn Testing T
: : Untagaed| % 630U ot aoaingt _
! Host machine dumps | extraction model 5
Fig. 2. System architecture
TABLE II ,
FLOW-LEVEL FEATURE SET packet that instructs the bot to download an executable from
the code server and run it. The second packet (#11) is a
1;98;1& E’escripﬂoﬂd - - response from the bot to the botmaster, so the command
AvgrkiLen Average an anance o E - ‘ - - _
VarPkiLen | lengih of packets in KB pau:,kel is a BR packet having Bll%temel = lms. The bot
Bot-app Number of BA packets as quickly establishes a TCP connection with the code server
percentage of total packets (other host) in packets #12-14. Thus, the command packet is
= L] 2 Lo 3 % . - % .
:;lg&"::l']‘:’: x:‘lfggﬁag&;’tf““ of Batime also a BO packet having BOtime = Tms (the time differ-
Bot-reply | Number of BR packels as ence between the incoming command and the first outgoing
percentage of total packets packet to another host). After downloading, the bot runs the
" = — o = ” .
:;fgg::::l‘: :;:H%Rm;m;?me of BRiime executable mycalc.exe. Thus, this command packet is also
AvgBRsie | Aversge and Vacsnce of BRAGE a BA packet having BAtime = 2.283s.
VarBRsize | of all BR packets o
Bot-other Number of BO packets as C. Classification
percentage of total packets :
AvgBOtime | Average and Variance of BOtime WE s, 8 Suppon Y?Cmr .MaChme (SYM), BE?Y.E ¥ et
VarBOtime | of all BO packets decision tree (J48), Naive Bayes, and Boosted decision tree

second threshold has been determined by our observation

of the bots. We will refer to these incoming packets as

BA packets.

« BAtime (real-valued): This feature records the time dif-
ference between receiving a BA packet and the launching
of the corresponding application.

« BAmatch (boolan-valued): A BA packet possesses this
feature if its payload contains the name of the application
that was launched.

b) Flow-level features.: As explained earlier, the flow-
level features of a flow are the aggregations of packet-level
features in that flow. They are summarized in Table 2. All
flow-level features are real-valued. Also note that we do not
use any flow-level feature that requires payload analysis.

B. Log file Correlation

Fig. 3 shows an example of multiple log file correlation.
Portions of the tepdump (left) and exedump (right) log
files are shown in this example, side by side. Each record
in the tepdump file contains the packet number (No), ar-
rival/departure time (Time), source and destination addresses
(Src/Dest), and payload or other information (Payload/Info).
Each record in the exedump file contains two fields: the
process start time (Start Time), and process name (Process).
The first packet (#10) shown in the tepdump is a command

(Boosted J48) for the classification task. In our previous work
[15] we have found that each of these classifiers demonstrates
good performance for malware detection problems. Specifi-
cally, SVM is robust to noise and high dimensionality and
can be fine-tuned to perform efficiently on a specific domain.
Decision trees have a very good feature-selection capability
and are much faster than many other classifiers both in training
and testing time. Bayes Nets are capable of finding the inter-
dependencies between different attributes. Naive Bayes is also
fast, and performs well when the features are independent
of one another. Boosting is particularly useful because of its
ensemble methods. Thus, each of these classifiers has its own
virtue, In a real deployment, we would actually use the best
among them.

D. Packer Filrering

One major implementation issue related to examining the
packet traces is the large volume of traffic that needs to be
scanned. We try to reduce unnecessary scanning of packets
by filtering out the packets that are not interesting to us,
such as the TCP handshaking packets (SYN.ACK,SYNACK) and
NetBios session request/response packets.

V. EVALUATION

For evaluation, we tag all the flows as either bot flows or
normal flows depending on whether the flow is between a bot
and its C&C center or not. Then we extract feature-values

203

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

TCP Dump Exe Dump
No Time Sre Dst Proio Payload / Info Start Time Process
10 220001529 raster hot IRC PRIVIMSG #testhot : download 21:43:29953 windurap exe
(httpJiserver 80800kale e xe o \tayeale exg 1.
AL 220001530 bot waster IRC PRIVMSG #testhot :dowmloading 21:56:11.203 pingexe
Ittpiserver 8020fcalc2 exe.......
M2 220001536 ot geever TCP 5YN 21:58:48. 421 notepad exe
13 220001543 server ot TCP SYN, ACK
14 220001544 bot gerver TCP ACK 2203812 myralc.exe
15 220001545 bot gerver HTTP GET Jealc2.exe HTTP/ .1
19 220001754 server hot TCP ACK 2050156 anifwexe
Other packets dwng download...........oooiine
33 220002308 ot master IRC PRIVMSG #testhot ‘downloaded 112.0 kb ta 227350546 motepad exe
c:lmgcalc.exe@ 1120 Bblsec...
38 220003924 hot master [RC PRIVMESG #testbot opened cryealc exe ..
Fig. 3. Multiple log file correlation

TABLE III
PERFORMANCES OF DIFFERENT CLASSIFIERS ON FLOW-LEVEL FEATURES

Dataset | Metric | Boosted- | Bayes- | Naive- | J48 | SVM
148 Net Bayes
ACC% 98.9 99.0 08.9 | 988 | 97.8
SDBot FP% L5 1.3 L5 L6 3.0
FN% 0.0 0.0 0.0 00 | 00
ACC% 98.8 96.4 952 | 964 | 964
RBot FP% 1.5 30 3l 32 3.0
FN% 0.0 4.2 6.5 40 | 42
TABLE IV

COMPARING PERFORMANCES BETWEEN OUR METHOD (TEMPORAL) AND
THE METHOD OF LIVADAS ET AL. ON THE COMBINED DATASET

Method Metric | Boosted- | Bayes- | Naive- | J48 | SVM
J48 Net Bayes
Temporal | ACC% 99.9 99.5 99.1 992 | 99.1
Livadas | ACC% 97.0 99.7 97.1 | 975 | 99.0
Temporal | FP% 0.0 0.0 0.0 0.0 | 0.0
Livadas FP% 0.3 0.0 0.0 00 | 0.0
Temporal | FN% 0.2 0.9 1.9 1.7 1.9
Livadas FN% 6.5 0.6 6.3 59 | 21

for each flow using the technique described in Section IV-A.
Finally, we apply five-fold cross validation on the data and
report the accuracy and false alarm rates. We use the Weka
ML toolbox [16] for classification,

A. Performance on different data sets

Table 3 reports the classification accuracies (ACC), false
positive rates (FP), and false negative rates (FN) for each of
the classifiers for different datasets. The datasets SDBot and
RBot correspond to those where the bot-flows are generated
only from SDBot and RBot, respectively; and normal flows are
generated from uninfected machines. The results are obtained
by applying five-fold cross validation on the datasets. Boosted
J48 has the best detection accuracy (98.8%) for RBot, whereas
Bayes Net has the best detection accuracy (99.0%) for SDBot.
However, it is evident that Boosted J48 is less dataset-sensitive
since it performs consistently on both datasets, and Bayes
Net is only 0.1% better than Boosted J48 for the SDBot
dataset. Thus, we conclude that Boosted]48 has overall better

performance than other classifiers. This is also supported by
the results presented next.

B. Comparison with other technigues

We also compare our technique with another machine-
learning technique applied by Livadas et al. [5]. They extract
several flow-based features, such as a histogram of packet
sizes, flow duration, bandwidth etc., but these are different
from our feature set. They first identify IRC flows and then
detect bot flows in the IRC flows. We don’t need to identify
IRC flows to detect C&C traffic using our analysis, but in order
to perform a fair comparison we filter out non-IRC flows. We
then extract their optimal set of features from the filtered data,
apply five-fold cross validation, and report the accuracy and
false alarm rates.

The rows labeled “Temporal” and “Livadas™ in Table 4
report the classification accuracies (ACC), false positive rates
(FP), and false negative rates (FN) of our technique and the
technique of Livadas et al. [5], respectively. The comparison
reported is for the combined dataset that consists of bot-
flows from both SDBot and RBot infected machines, and all
the normal flows from uninfected machines (with non-IRC
flows filtered out). We see that Temporal performs consistently
across all classifiers having accuracy > 99%, whereas Livadas
has < 97.5% accuracy in three classifiers and shows slightly
better accuracy (0.2% higher) than Temporal only with Bayes
Net. Bayes Net tends to perform well on a feature set if there
are dependencies among the features. Since it is likely that
there are dependencies among the features used by Livadas,
we infer that the overall detection accuracy of Livadas is
probably sensitive to classifiers, whereas Temporal is robust to
all classifiers. Additionally, Temporal outperforms Livadas in
false negative rates for all classifiers except Bayes Net. Finally,
we again find that BoostedJ48 has the best performance among
all classifiers, so we conclude that our Temporal method with
BoostedJ48 has the best overall performance.

Fig. 4 presents the receiver operating characteristic (ROC)
curves corresponding to the combined dataset results. ROC
curves plot true positive rate against false positive rate. An

204

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

ROC Curves
1 PP —p B B84
] F
& 084
2064
= —+— BoostedJ48-Temporal
-]
£ 04 ~—=a— BayesNet-Livadas
= 02 ==& =~ BayesNet-Temporal
=
= g L SRS BoostedJ48-Livadas
0 0.2 04 0.6 08 1
False Positive Rate
Fig. 4. ROC curves of Bayes Net and Boosted J48 on the combined data
Average packet lengths
2
o SDBot ===
S 16F.. RBot — -
= 5 Normal == s
=12 i LA
&l]
2] :
PR VR 7
o H
_"A H
2 04r b e 1
0
Flows
Average response times
-~ 15
¥
bF]
2 12
E BAti
8. g latiille = 8
; BRiime —
£ 06 F BOtime - .
7 031 -
=4 o
Flows
Fig. 5. Flow summary statistics. (above): Average packet lengths of normal

and bot-flows, (below): Average BRrime, BOtime, and BArime of bot-flows

ROC curve is better if the area under the curve (AUC) is
higher, which indicates a higher probability that an instance
will be correctly classified. In this figure, the ROC curve
labeled as “Bayes Net-Livadas™ corresponds to the ROC curve
of Bayes Net on the combined data set for the Livadas et
al. technique, and so on. We see that all of the ROC curves
are almost co-incidental, except BoostedJ48-Livadas, which
is slightly worse than the others. The AUC of “Boosted)48-
Livadas™ is 0.993, whereas the AUC of all other curves are
greater than or equal to 0.999.

C. Further analysis

Fig. 5 shows statistics of several features. The upper chart
plots the average packet length (in KB) of each flow that
appears in the dataset. Bot-flows and normal flows are shown

as separate series. A data point (X,Y") represents the average
packet length Y of all packets in flow X of a particular series
(bot-flow or normal). It is clear from the chart that bot-flows
have a certain packet length (< 0.2K' B), whereas normal
flows have rather random packet lengths. Thus, our assumption
about packet lengths is validated by this chart. The lower
chart plots three different response times: Bot-response time
(BRtime), Bot-other time (BOtime), and Bot-app time (BArime)
for each bot-flow. It is evident that average BRrime is less
than 0.1 second, average BOtime is less than 0.2 seconds and
average BAtime is between (.6 and 1.6 seconds. The threshold
values for these response times were chosen according to these
observations.

VI. CoNcCLUSION

We presented the novel idea of correlating multiple log files
and applying data mining for detecting botnet C&C traffic. Our
idea is to utilize the temporal correlation between two different
log files: tepdump. and exedump. The tepdump file logs
all network packets that are sent/received by a host, whereas
the e xedump file logs the start times of application program
executions on the host. We implement a prototype system
and evaluate its performance using five different classifiers:
support vector machines, decision trees, Bayes Nets, Boosted
decision trees, and Naive Bayes. Comparison with another
technique by Livadas et al. [5] for C&C traffic detection shows
that our method has overall better performance when used
with a Boosted decision tree classifier. The technique used
by Livadas et al. first identifies IRC flows and then detects
botnet traffic from the IRC flows. Our technique is more
general because it does not need to identify IRC traffic and
is therefore applicable to non-IRC botnet protocols, as long
as certain realistic assumptions about the command-response
timing relationships (detailed in Section I1I) remain valid.

In future work we intend to apply this temporal corre-
lation technique to more system level logs such as those
that track process/service executions, memory/CPU utilization,
disk reads/writes, and so on. We also would like to implement
a real-time C&C traffic detection system using our approach.

REFERENCES

[1] T Ferguson, “Botnets threaten the internet as we know it.” ZDNer
Australia, April 2008,
[2] M. Rajab, I. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Proc. 6th ACM
SIGCOMM Conference on Internet Measurement (IMC'06), 2006, pp.
41-52.
F. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: Exploring a
root-cause methodology to prevent distributed denial-of-service attacks,”
in Proc. 10th Ewropean Symposium On Research In Computer Security
(ESORICS), vol. Lecture Notes in Computer Science 3676, September
2005, pp. 319-335.
J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: Overview and case study.” in Proc. st Workshop
on Hat Topics in Understanding Boneis, 2007, p. 1.
C. Livadas, B. Walsh, D. Lapsley, and W. Strayer, “Using machine
learning techniques to identify botnet traffic,” in Proc. 3ist IEEE
Conference on Local Computer Nerworks (LCN'06), November 2006,
pp- 967-974.

3

[4

5

205

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

[6] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by standing Bomets, 2007, p. 7.

irc nickname evaluation,” in Proc. {st Workshop on Hot Topics in [11] (2006) SDBOT information webpage. [Online]. Available:
Understanding Bomets, 2007, p. 8. www.megasecurity.org/trojans/s/sdbot/SdbotD. 5a.html.
[7] P. Barford and V. Yegneswaran, An Inside Look at Botnets, ser. Advances [12] (2006) RBOT information webpage. [Online]. Available:
in Information Security. Springer, 2006. hetp:/fjarry d.onestop.net/rebot-howto.html.
[8] D. Dagon, C. Zou, and W. Lee, “Modeling botnet propagation using [13] (2007) The Unreal IRC Daemon website. [Online]. Available:
time zones,” in Proc. 13th Network and Distributed System Security hitp:/fwww.unrealired. com/.
Svmposium (NDSS'06), 2006. [14] (2007) The Windump website. [Online]. Available:
[9] E. Cocke, E Jahanian, and D. McPherson, “The zombie roundup: htp:ffwww.winpeap.org/windump/.
Understanding, detecting, and disrupting botnets,” in Proc. Steps to [15] M. M. Masud, L. Khan, and B. Thuraisingham, “A scalable multi-
Reducing Unwanted Traffic on the Internet Workshop (SRUTI'05), 2005, level feature extraction technique to detect malicious executables,”
p. 6. Information Systems Frontiers, vol. 10, no. 1, pp. 33-45, March 2008.
[10] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale botnet detection [16] (2008) The WEKA Data Mining with Open Source Software website.
and characterization,” in Proc. Ist Workshop on Hot Topics in Under- [Online]. Available: http:/iwww.cs.waikato.ac.nz/mliweka/.

206

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 19,2010 at 17:19:57 UTC from IEEE Xplore. Restrictions apply.

