
A Semantic Web Based Framework for Social Network
Access Control

Barbara Carminati
University of Insubria

Via Mazzini, 5
Varese - Italy

barbara.carminati@
uninsubria.it

Elena Ferrari
University of Insubria

Via Mazzini, 5
Varese - Italy

elena.ferrari@
uninsubria.it

Raymond Heatherly
University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080 U.S.A.
rdh061000@utdallas.edu

Murat Kantarcioglu
University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080 U.S.A.

muratk@utdallas.edu

Bhavani Thurainsingham
University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080 U.S.A.
bxt043000@utdallas.edu

ABSTRACT
The existence of on-line social networks that include per-
son specific information creates interesting opportunities for
various applications ranging from marketing to community
organization. On the other hand, security and privacy con-
cerns need to be addressed for creating such applications.
Improving social network access control systems appears as
the first step toward addressing the existing security and pri-
vacy concerns related to on-line social networks. To address
some of the current limitations, we propose an extensible
fine grained access control model based on semantic web
tools. In addition, we propose authorization, admin and
filtering policies that depend on trust relationships among
various users, and are modeled using OWL and SWRL. Be-
sides describing the model, we present the architecture of
the framework in its support.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; I.2.4
[Knowledge Representation]: Semantic Networks

General Terms
Design, Security, Theory

Keywords
Social Networks, Semantic Web, Access Control

1. INTRODUCTION
On-line Social Networks (OSNs) are platforms that allow

people to publish details about themselves and to connect to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

other members of the network through links. Recently, the
popularity of OSNs is increasing significantly. For example,
Facebook now claims to have more than a hundred million
active users.1 The existence of OSNs that include person-
specific information creates both interesting opportunities
and challenges. For example, social network data could be
used for marketing products to the right customers. At the
same time, security and privacy concerns can prevent such
efforts in practice [2]. Improving the OSN access control
systems appears as the first step toward addressing the ex-
isting security and privacy concerns related on-line social
networks. However, most of current OSNs implement very
basic access control systems, by simply making a user able
to decide which personal information are accessible by other
members by marking a given item as public, private, or ac-
cessible by their direct contacts. In order to give more flex-
ibility, some online social networks enforce variants of these
settings, but the principle is the same. For instance, be-
sides the basic settings, Bebo (http://bebo.com), Facebook
(http://facebook.com), and Multiply (http://multiply.
com) support the option “selected friends”; Last.fm (http://
last.fm) the option “neighbors” (i.e., the set of users having
musical preferences and tastes similar to mine); Facebook,
Friendster (http://friendster.com), and Orkut (http://
www.orkut.com) the option “friends of friends”; Xing (http:
//xing.com) the options “contacts of my contacts” (2nd de-
gree contacts), and“3rd”and“4th degree contacts”. It is im-
portant to note that all these approaches have the advantage
of being easy to be implemented, but they lack flexibility.
In fact, the available protection settings do not allow users
to easily specify their access control requirements, in that
they are either too restrictive or too loose. Furthermore,
existing solutions are platform-specific and they are hard to
be implemented for various different online social networks.

To address some of these limitations, we propose an ex-
tensible, fine-grained OSN access control model based on
semantic web technologies. Our main idea is to encode so-
cial network-related information by means of an ontology. In
particular, we suggest to model the following five important
aspects of OSNs using semantic web ontologies: (1) user’s

1http://www.facebook.com/press/info.php?statistics

177

profiles, (2) relationships among users (e.g., Bob is Alice’s
close friend), (3) resources (e.g., online photo albums), (4)
relationships between users and resources (e.g., Bob is the
owner of the photo album), (5) actions (e.g., post a message
on someone’s wall). By constructing such an ontology, we
model the Social Network Knowledge Base (SNKB). The
main advantage for using an ontology for modeling OSN
data is that relationships among many different social net-
work concepts can be naturally represented using OWL. Fur-
thermore, by using reasoning, many inferences about such
relationships could be done automatically. Our access con-
trol enforcement mechanism is then implemented by exploit-
ing this knowledge. In particular, the idea is to define se-
curity policies as rules (see Section 4), whose antecedents
state conditions on SNKB, and consequents specify the au-
thorized actions. In particular, we propose to encode the
authorizations implied by security policies by means of an
ontology, obtaining the Security Authorization Knowledge
Base (SAKB). Thus, security policies have to be translated
as rules whose antecedents and consequents are expressed
on the ontology. To achieve this goal, we use the Semantic
Web Rule Language (SWRL) [9]. As consequence, the ac-
cess control policies can be enforced by simply querying the
authorizations, that is, the SAKB. The query can be eas-
ily directly implemented by the ontology reasoner by means
of instance checking operations, or can be performed by a
SPARQL query, if the ontology is serialized in RDF. In this
paper, we focus on how to model such a fine-grained social
network access control system using semantic web technolo-
gies. We also assume that a centralized reference monitor
hosted by the social network manager will enforce the re-
quired policies. Since our proposed approach depends on
extensible ontologies, it could be easily adapted to various
online social networks by modifying the ontologies in our
SNKB. Furthermore, as we discuss in details later in the pa-
per, semantic web tools allow us to define more fine grained
access control policies than the ones provided by current
OSNs.

The paper is organized as follows. In Section 2, we provide
a brief discussion of current security and privacy research re-
lated to online social networks. In Section 3, we discuss how
to model social networks using semantic web technologies.
In Section 4, we introduce a high level overview of the se-
curity policies we support in our framework. In addition to
access control policies, we state filtering policies that allow
a user (or one of her supervisors) to customize the content
she accesses. We also introduce admin policies, stating who
is authorized to specify access control and filtering policies.
In Section 5, we introduce the authorization ontology and
the SWRL rule encoding of security policies. In Section 6,
we discuss how security policies could be enforced. In Sec-
tion 7, we give an overview of the framework that integrates
the previous components. Finally, we conclude the paper in
Section 8.

2. RELATED WORK
Past research on OSN security has mainly focused on

privacy-preserving techniques to allow statistical analysis on
social network data without compromising OSN members’
privacy (see [5] for a survey on this topic). In contrast, ac-
cess control for OSNs is a relatively new research area. As
far as we are aware, the only other proposals of an access
control mechanism for online social networks are [10], [1]

and [4]. The D-FOAF system [10] is primarily a Friend of
a Friend (FOAF) ontology-based distributed identity man-
agement system for social networks, where access rights and
trust delegation management are provided as additional ser-
vices. In D-FOAF, relationships are associated with a trust
level, which denotes the level of friendship existing between
the users participating in a given relationship. Although
[10] discusses only generic relationships, corresponding to
the ones modeled by the foaf:knows RDF property in the
FOAF vocabulary [3], another D-FOAF-related paper [6]
considers also the case of multiple relationship types. As far
as access rights are concerned, they denote authorized users
in terms of the minimum trust level and maximum length
of the paths connecting the requester to the resource owner.
In [1], authors adopt a multi-level security approach, where
trust is the only parameter used to determine the security
level of both users and resources. In [4], a semi-decentralized
discretionary access control model and a related enforcement
mechanism for controlled sharing of information in OSNs is
presented. The model allows the specification of access rules
for online resources, where authorized users are denoted in
terms of the relationship type, depth, and trust level existing
between nodes in the network.

Compared to existing approaches, we use semantic web
technologies to represent much richer forms of relationships
among users, resources and actions. For example, we are
able to represent access control rules that leverage relation-
ship hierarchies and by using OWL reasoning tools, we can
infer a “close friend” is also a “friend” and anything that
is accessible by friend could be also accessible by a “close
friend”. In addition, our proposed solution could be easily
adapted for very different online social networks by mod-
ifying the underlying SNKB. A further discussion on the
differences between the proposed framework and the access
control mechanism in [4] is provided in Section 4.

Semantic web technologies have been recently used for
developing various policy and access control languages for
domains different from OSNs. For example, in [12], authors
compare various policy languages for distributed agent based
systems that define authorization and obligation policies. In
[8], OWL is used to express role-based access control policies.
In [15], authors propose a semantic access control model
that separates the authorization and access control manage-
ment responsibilities to provide solutions for distributed and
dynamic systems with heterogeneous security requirements.
None of these previous work deals with the access control
issues related to online social networks. Among the exist-
ing work, [7] is the most similar to our proposal. Compared
to [7], we provide a much richer OWL ontology for model-
ing various aspects of online social networks. In addition,
we propose authorization, admin and filtering policies that
depend on trust relationships among various users.

3. MODELING SOCIAL NETWORKS US-
ING SEMANTIC WEB TECHNOLOGIES

Recently, semantic web technologies such as Resource De-
scription Framework (RDF) and the Web Ontology Lan-
guage (OWL) have been used for modeling social network
data [11]. Although our goal in this paper is not to propose
new semantic approaches for modeling online social network
data, we would like to give a brief overview of current ap-
proaches for the sake of completeness by pointing out also

178

other social network information that could be modeled by
semantic technologies. In our discussion, we will use Face-
book as a running example. At the same time, we would
like to stress that our discussion could be easily extended to
other social networking frameworks. In general, we identify
five categories of social network data that could be modeled
by semantic technologies. These are: (1) personal informa-
tion; (2) personal relationships; (3) social network resources;
(4) relationships between users and resources; (5) actions
that can be performed in a social network. In the following,
we discuss how these social network data can be represented.

3.1 Modeling Personal Information
Some of the personal information provided on OSNs such

as Facebook can be modeled by using the Friend-of-a-Friend
ontology (FOAF) [3]. FOAF is an OWL-based format for
representing personal information and an individual’s social
network. FOAF provides various classes and properties to
describe social network data such as basic personal infor-
mation, online account, projects, groups, documents and
images. However, these basic mechanisms are not enough
to capture all the available information. For example, there
is no FOAF construct to capture the meaning for looking-
For (e.g., John Smith is looking for friendship). Thanks to
the extensibility of the RDF/OWL language, this is easily
solvable. For example, consider the following case where
we capture the information related to an individual with
Facebook Profile Id 999999 using a new Facebook ontology
written in the RDF/OWL language.2 In this example, we
assume that ”fb” ontology has a property name lookingFor
to capture the required information.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix fb: <http://example.org/facebook> .

<http://www.facebook.com/profile.php?id=999999999>

foaf:name ”John Smith” .

<http://www.facebook.com/profile.php?id=999999999>

fb:lookingFor ”Friendship” .

As the example suggests, existing ontologies such as FOAF
could be easily extended to capture personal information
available on online social networks.

3.2 Modeling Personal Relationships
Currently, online social networks do not support fine-grained

definitions of relationships. For instance, Facebook allows
you to specify whether you attended school or work with a
friend, but offers no way to express what that truly means,
that is, the strength of the relationship. It is this fine-
grained structure that we wish to capture. Mika [11] pro-
poses a reification based model for capturing relationship
strength. Instead, to comply with W3C specifications [14],
we adopt the use of the n-ary relation pattern rather than
use simple statement reification, which is a violation of the
specification [13]. If we were to violate the specification,
then relationships would be modeled using a series of four
RDF statements to create an identifier for the relationship.
Unfortunately, as a result of that, SWRL would be unable
to understand these relationships. We believe that using a
specification-recommended pattern and retaining the abil-
ity to use SWRL to do inference on relationships is the best
solution.

2We use Turtle notation for representing OWL.

For the reasons stated above, we choose to model per-
sonal relationships using n-ary relation pattern. To comply
with n-ary relation specification [13], we define a Friend-
shipRelation class which has subclasses that denote a general
strength of friendship. The root FriendshipRelation class
implies an unspecific friendship while the three subclasses,
Family, CloseFriend, and DistantFriend, give an indicator
of the closeness between people. The CloseFriend subclass
has a further extension: BestFriend.

This basic structure allows us to easily mimic the exist-
ing structure of Facebook relationship types. However, as
mentioned previously, these relationship types have no pre-
defined meanings. In order to begin to quantify the meaning
of relationship assignments, each instance of FriendshipRela-
tion has a data property TrustValue. This represents the
level of trust that the initiator has with the friend.

As an example suppose that an individual (e.g., John
Smith) defines a relationship with a colleague (e.g., Jane
Doe). This creates an instance of the FriendshipRelation
class with the TrustValue data property, which represents
the level of trust between the initiator and his friend. The
instance also has an object property that links it to the in-
stance of the friend. This instance of the FriendshipRelation
class is then tied back to John Smith through the use of the
Friendship object property.

It is important to note that any (uni-directional) rela-
tionship in the social network is a single instance of the
FriendshipRelation class. Thus, to model the standard bidi-
rectional nature of social network relations, we need two
instances of this class. However, the simple logical inference
that if B is a friend of A, then A is a friend of B can not be
implemented by SWRL, in that this would imply to create
a new instance of the Friendship class. Unfortunately, this
is outside the realm of SWRL’s capability. So this must be
taken care of outside of the SWRL framework by an external
application. It is also important to note that the TrustValue
property of relationships is a value that is computed auto-
matically outside the OWL/SWRL component of the social
network. This value is used to do various inference tasks
further in the network. At the most basic level, where the
TrustValue is a static number based on the friendship type,
this is a trivial component. We assume that there will be a
more complicated formula used in calculating the TrustValue
that may be beyond the bounds of the built-in mathematical
operators of SWRL.

We experience a similar difficulty with indirect relation-
ships. To define an inferred relationship, we would once
again need to create a new instance of FriendshipRelation.
We can, however, create these indirect relationships simi-
lar to how we maintain symmetry of relationships, detailed
above. The only difference in the indirect relationship is that
instead of creating an instance of the class FriendshipRela-
tion, we create an instance of a separate class, InferredRela-
tion, which has no detailed subclasses, yet is otherwise iden-
tical to the FriendshipRelation base class.

3.3 Modeling Resources
A typical OSN provides some resources such as Albums

or Walls to share information among individuals. Clearly
RDF/OWL could be used to capture the fact that Albums
are composed of pictures and each picture may have multi-
ple people in it. In our framework, we model resources as a
class, beginning with a generic Resource class. As subclasses

179

to this, we can have, for example, PhotoAlbum, Photo, and
Message. Each of these has specific, unique properties and
relationships. For instance, PhotoAlbum has a name and
a description as data properties and has an object prop-
erty called containsPhoto that links it to instances of Photo.
These have a name, a caption, and a path to the stored
location of the file. Messages have a sender, a receiver, a
subject, a message, and a time stamp. We can also create
a subclass of Messages called WallMessage which is similar
to Messages in that it has the same data properties, but it
has additional restrictions such as that a WallMessage may
only be sent to a single individual.

3.4 Modeling User/Resource Relationships
Current applications such as Facebook assume that the

only relationship between users and resources is the own-
ership. However, from an access control point of view this
is not enough. Let us consider, for example, a photograph
that contains both John Smith and Jane Doe. Jane took the
picture and posted it on the social network. Traditionally,
Jane would be the sole administrator of that resource. Since
the photo contains the image of John (we say that John is
tagged to the photo), in our model John may have some
determination as to which individuals can see the photo.

To model something like a photo album, we can use two
classes. The first is a simple Photo class that simply has an
optional name and caption of the photo and a required path
to the location of the file. A photo is then linked to each
person that is listed as being in the photo. A PhotoAlbum
has a name and a description. PhotoAlbum and Photo are
linked using the containsPhoto relationship. The individual
owner – the person who uploaded the photos – is indicated
by the ownsAlbum relationship. Similarly, we can represent
other relationships between users and resources.

3.5 Modeling Actions
In a social network, actions are the basis of user partici-

pation. According to the proposed representation an action
is defined as object property that relates users, resources,
and actions. Moreover, we model hierarchies for actions by
means of subproperty. Take, for instance, three generic ac-
tions: Read, Write, Delete. We define a hierarchy in which
Delete is a subtype of Write which is, itself, a subtype of
Read. In a non-hierarchical model, if John Smith was able to
read, write, and delete a photo, then we would need three
authorizations to represent this property. However, as we
have defined the hierarchy, with only the authorizations of
<“John Smith”, Delete, Photo1>, John Smith has all three
properties allowed.

We can also extend traditional access restrictions to take
advantage of social networking extensions. For instance, the
action Post can be defined as a subtype of Write. So, let
us say that we define the actions Write to mean that an
individual can send a private message to another individual,
and that the action Post means that an individual can post
a message to another’s Wall so that any of their friends can
see it. Then allowing a user the Post action would allow
them to see the friends wall, send them a private message,
and write on their wall, but she could not delete anything.

3.6 Running Example
In the remainder of this paper, we will use the small net-

work shown in Figure 1 to illustrate our access control mech-

Figure 1: A portion of an OSN

anism. Our running example has four individuals: Alice,
Bob, Charlie, and David. Alice, Bob, and Charlie form a
clique with different strengths of friendship connecting them.
David is a friend only of Bob via the default Friendship type.
There is also a PhotoAlbum that was uploaded by Alice that
contains a single photo that is a picture of Charlie.

4. SECURITY POLICIES FOR OSNS
As evinced by recent work on social network security, pro-

tecting resources in social networks requires us to revise tra-
ditional access control models and mechanisms. However,
the approaches proposed so far have focused only on access
control policies, that is, on the problem of regulating the ac-
cess to OSN resources. We think that this is not enough, in
that the complexity of the social network scenario requires
the definition of further security policies, besides standard
access control policies. In this section, we outline the secu-
rity policies our framework supports.
Access Control policies. The framework supports access con-
trol policies to regulate how resources can be accessed by
OSN participants. In particular, the supported access con-
trol policies are defined on the basis of our previous work
[4]. Here, authorized users are denoted in terms of the type,
depth, and trust level of the relationships existing between
nodes in the network. For instance, an access control pol-
icy can state that the only OSN participants authorized to
access a given resource are those with a direct or indirect
friendship relationship with the resource owner, provided
that this relationship has a given trust value. However, the
access control policies supported by the proposed framework
have some notable improvements w.r.t. those presented in
[4]. These improvements are mainly due to the fact that our
access control policies are defined according to the SNKB
described in Section 3. This means that the object, subject
and privilege of an access control policy are defined exploit-
ing the semantic modeling of resources, users and actions.
In particular, as it will be explained in Section 5, access con-
trol policies are defined as rules over ontologies representing
the concepts introduced in Section 3. Thus rather than ac-
cess control policies specified over each single participant
and resource of a OSN, we are able to specify access control
policies directly on the OSN semantic concepts. Indeed, it
is possible to specify a generic access control policy stating
that the photos can be accessed only by friends, by simply
specifying the Photo class as a protected object. As such,
the access control policy will be applied to all instances of

180

the Photo class, i.e., to all photos, thus greatly simplify-
ing policy administration. Specifying access control policies
over semantic concepts has another benefit in that it is pos-
sible to exploit the hierarchy defined over the concepts to
automatically propagate access control policies. For exam-
ple, with respect to resources, if Photo has been defined
with some subclasses, say PrivatePhoto and HolidaysPhoto,
the previous access control policy can be automatically ap-
plied to all the instances belonging to any subclass of Photo.
Access control policies can be also propagated along other
dimensions, that is, according to hierarchies specified in the
ontologies of other OSN concepts (e.g., ontologies for re-
lationship types and actions). For example, in case the
supported relationship ontology defines an hierarchy for the
friendship relationship, the previous access control policy is
propagated to all OSN participants with which the resource
owner has any kind of friendship relationship. A similar
propagation arises if the action ontology defines an hierar-
chy of actions. Note that also in [4], authorized subjects are
defined in terms of user relationships rather than by listing
specific instances (i.e., person ids). However, in that work
policy propagation is not possible, since no hierarchies are
defined over resources, relationships and actions. Moreover,
the semantic modeling we propose in this paper makes us
able to specify authorized users not only in terms of the
relationships they should have with the resource owner (as
in [4]), but also in terms of the relationships they should
have with the resource. Thus, for example it is possible to
specify an access control policy stating that all OSN partic-
ipants that are tagged to a photo are authorized to access
that photo. The only way to specify this access control pol-
icy in [4] as well as in all the other existing models for OSNs
is to explicitly specify a different access control policy for
each OSN participant tagged to the photo.
Filtering policies. In a OSN, users can publish information
of very heterogeneous content, ranging from family photos
to adult-oriented contents In this sense, the access control is-
sues arising in OSNs are similar to those we have in the web,
where the availability of inappropriate information could be
harmful for some users (for example, young people). To
protect users from inappropriate or unwanted contents, we
introduce filtering policies, by which it is possible to specify
which data has to be filtered out when a given user browses
the social network pages. By means of a filtering policy, it is,
for example, possible to state that from OSN pages fetched
by user Alice, all videos that have not been published by
Alice’s direct friends have to be removed. Similar to access
control policies, filtering policies are defined as rules over
ontologies representing the concepts introduced in Section 3
(see Section 5). This implies that policy propagation is pos-
sible also in case of filtering policies. Another relevant aspect
of filtering policies is related to the user that specifies the
policy (i.e., the grantor). Indeed, in our framework, a filter-
ing policy can be specified in two different ways. According
to the first one, a filtering policy is specified by a user to
state which information she prefers not to access, i.e., which
data has to be filtered out from OSN pages fetched by her.
Thus, in this case the grantor and the user to which the pol-
icy applies, i.e., the target user, are the same. These policies
state user preferences w.r.t. the contents one wants to access
and for that reason are called filtering preferences. However,
we also supports the specification of filtering policies where
the target user and the grantor are different. This kind of

filtering policies makes the grantor able to specify how the
SN pages fetched by target users have to be filtered. By
means of these filtering policies, a grantor can supervise the
content a target user can access. In this case, we refer to
the filtering policy as supervised filtering policy. This repre-
sents an extremely useful feature in open environments like
OSNs. For example, a parent can specify a supervised fil-
tering policy stating that her children do not have to access
those videos published by users that are not trusted by the
parent herself. As it will be more clear later on, semantic
technologies greatly facilitate the specification of this kind
of policies.

It is worth noticing that both filtering preferences and
supervised filtering policies can not be enforced by simply
supporting negative access control policies, that is, policies
avoiding access to resources. This is due to the fact that
access control policies and filtering policies have totally dif-
ferent semantics. Indeed, an access control policy is specified
by the resource owner to state who is authorized or denied
to access her resources. Rather, a filtering policy is speci-
fied by a supervisor for a target user or by the target user
herself, to specify how resources have to be filter out when
she fetches an OSN page. Note that, according to the pro-
posed semantics, this filtering takes place even in the case
the target user is authorized to access the resource, that is,
even if she satisfies the access control policies specified by
the resource owner.
Admin policies. Introducing access control and filtering poli-
cies in a multi-user environment like OSNs requires to de-
termine who is authorized to specify policies and for which
target users and objects. To address this issue we introduce
admin policies, that make the Security Administrator (SA)
of the social network able to state who is authorized to spec-
ify access control and filtering policies. Admin policies have
to be flexible enough to model some obvious admin strategies
that are common to traditional scenarios (e.g., the resource
owner is authorized to specify access control policies for her
resources) as well as more complex strategies, according to
the security and privacy guidelines adopted by the OSN.
For instance, the SA could specify an admin policy stating
that users tagged to a given resource are authorized to spec-
ify access control policies for that resource. Note that, as
previously pointed out, the ontology modeling the relation-
ships between users and resources described in Section 3 is
extremely useful in the specification of such admin policies.
Other kinds of admin policies are those related to filtering
policies. For instance, by means of an admin policy, a SA
could authorize parents to define supervised filtering policies
for their young children. This admin policy can be defined
by stating that if a user U1 has a relationship of type Par-
entOf with a user U2, which has age less than 16 (i.e., with
the property age less than 16), then U1 can state supervised
filtering policies where the target user is U1. The SA could
further refine this admin policy to specify that the parents
can state supervised filtering policies for their young children
only for video resources. This would modify the previous ad-
min policy by limiting the scope of the supervised filtering
policy the parents are authorized to specify.

5. SECURITY POLICY SPECIFICATION
A policy language defines security policies according to

three main components: a subject specification aiming to
specify the entity to which a security policy applies (e.g.,

181

users, processes), an object specification to identify the re-
sources to which the policy refers to (e.g., files, HW re-
sources, relational tables), and an action specification, spec-
ifying the action (e.g., read, write execute, admin) that sub-
jects can exercise on objects. Moreover, to make easier the
task of policy evaluation, policies are enforced through a set
of authorizations, stating for each subject the rights she has
on the protected resources. We encode security policies by
means of rules. In general, a rule consists of two formulae
and an implication operator, with the obvious meaning that
if the first formula, called the antecedent, holds then the sec-
ond formula, called the consequent, must also hold. Thus,
we encode each security policy as a security rule, that is, a
rule whose antecedent represents the conditions stated in the
policy subject and object specifications, and the consequent
represents the entailed authorizations. Note that since the
framework supports different types of security policies, the
security rules could entail different types of authorizations.
In particular, if the antecedent of a security rule encodes an
access control or admin policy, the consequent denotes the
entailed access control or admin authorizations. In contrast,
if the rule’s antecedent encodes a filtering policy (either a
filtering preference or a supervised filtering policy), the con-
sequent entails prohibitions rather than authorizations, since
this policy limits access to resources.

We adopt SWRL to encode security rules. SWRL has
been introduced to extend the axioms provided by OWL to
also support rules. In SWRL, the antecedent, called the
body, and the consequent, called the head, are defined in
terms of OWL classes, properties and individuals. More pre-
cisely, they are modeled as positive conjunctions of atoms.
Atoms can be of the form: (1) C(x), where C is an OWL
description or data range; (2) P(x,y), where P is an OWL
property and x and y could be variables, OWL individuals or
OWL data values; (3) sameAs(x,y); (4) differentFrom(x,y);
(5) builtIn(r,x,...), where r is a built-in predicate that takes
one or more arguments and evaluates to true if the argu-
ments satisfy the predicate. More precisely, an atom C(x)
holds if x is an instance of the class description or data range
C, an atom P(x,y) holds if x is related to y by property P,
an atom sameAs(x,y) holds if x is interpreted as the same
object as y, an atom differentFrom(x,y) holds if x and y are
interpreted as different objects, and builtIn(r,x,...) holds if
the built-in relation r holds on the interpretations of the
arguments.

Exploiting SWRL to specify security rules implies that au-
thorizations and prohibitions must be represented in some
ontology, thus to be encoded as a SWRL head. For this rea-
son, before presenting the encoding of a security policy, we
first introduce an ontology to model authorizations and pro-
hibitions. We refer to the knowledge base derived by this on-
tology as Security Authorization Knowledge Base (SAKB).

5.1 Authorizations and Prohibitions
Since the framework supports three different types of se-

curity policies, it has to manage three different types of au-
thorizations, namely access control authorizations, admin
authorizations, and prohibitions. In the following, we intro-
duce the proposed ontology for their representations. How-
ever, it is relevant to notice that this ontology is strictly
related to the ontologies supported by the OSN (see Section
3), in that it defines authorizations/prohibitions on the basis
of the supported actions and resources. As such, the follow-
ing does not intend to be the standard ontology for SAKBs,

rather it is the one that we adopt in our framework, based
on the semantic modeling presented in Section 3. Thus, the
discussion presented here must be read as a guideline for the
definition of an ontology of a SAKB.
Access control authorizations. The first kind of authoriza-
tions are those entailed by access control policies. In general,
an access control authorization can be modeled as a triple
(u,p,o) stating that subject u has the right to execute priv-
ilege p on object o. Thus, in some way, an access control
authorization represents a relationship p between u and o,
meaning that u can exercise p on o. Therefore, we decide
to encode an access control authorization for privilege p as
an instance of an OWL object property, named p, defined
between the authorized person and the authorized resource.

To model all possible access control authorizations we
have to introduce a different object property for each ac-
tion supported in the OSN (see Section 3). It is interesting
to note that by properly defining the object property en-
coding access control authorizations we can automatically
propagate the authorizations on the basis of the classifica-
tion defined among actions.

Example 1. Let us consider, for example, the action Post
and assume it has been defined as subclass of action Write.
In terms of access control, if the post privilege is authorized
to a user, then the write privilege is also authorized. In the
proposed framework, the access control authorizations can
be automatically inferred provided that object property Post
has been defined as subproperty of the object property Write.
We do note that this hierarchy may be different than in tra-
ditional access control systems. When we use SWRL, any-
thing that is defined for a superclass will also be defined for
its subclasses. However, the reverse is not true. So, when
we allow an individual to Write, it does not automatically
confer the Post authority.

Prohibitions. Filtering policies state whether the target user
is not authorized to access a certain object, in the case of su-
pervised filtering policies, or she prefers not to access, in the
case of filtering preferences. Similarly to access control au-
thorizations, a prohibition specifies a relationship between a
user and the resource she is not authorized or she prefers not
to access. For this reason, also prohibitions can be expressed
as an object property between Person and Resource classes.
More precisely, a prohibition for the Read privilege is de-
fined as the OWL object property PRead. An instance of
this object property <John, URI1>:PRead states that Bob
has not to read resource URI1. Similarly, to access control
authorizations, it is possible to specify how prohibitions have
to be propagated by simply defining subproperty.

Example 2. Let us again consider the three basic ac-
tions: Read, Write, Delete, and their prohibited versions:
PRead, PWrite, PDelete. We again wish to form a hierar-
chy of actions in a logical order. That is, if an individual is
prohibited from Reading a resource, then she should also be
prohibited from Writing and Deleting that resource. To do
this, we can simply define PRead to be a subtype of PWrite,
which is a subtype of PDelete.

Admin authorizations. Admin authorizations are those au-
thorizations implied by admin policies, which, we recall,
have the aim to authorize users to specify access control or
filtering policies. Therefore, admin policies entail two types
of authorizations: authorizations to specify access control

182

policies, to which we simply refer as admin authorizations,
and authorizations to specify filtering policies, i.e., admin
prohibitions. In general, an admin authorization can be rep-
resented as a triple (u,p,o) stating that user u is authorized
to specify access control policies for privilege p on object o.
Thus, similarly to authorizations and prohibitions also ad-
min authorizations can be expressed as an object property
between Person and Resource classes.

Example 3. According to this modeling, we can define
the Object property AdminRead, whose instances state that
a given user is authorized to express access control policies
granting the read privilege on a given object. Consider the
instance <Bob,URI1>:AdminRead, which states that Bob is
authorized to specify access control policies granting the read
privilege on the URI1 object.

Similarly, to access control authorizations, it is possible to
specify how admin authorizations have to be propagated by
simply defining subproperty.

Example 4. Let us declare the previously mentioned prop-
erty AdminRead and further create the properties Admin-
Write and AdminAll. We declare AdminAll to be a sub-
property of both AdminWrite and AdminRead. Consider our
running example where Alice owned a photo. Let us assume
that this grants her the AdminAll authorization on the photo.
If Alice attempts to allow Bob to Read the photo, an action
which is restricted to individuals with the AdminRead prop-
erty, then this is allowed via the AdminAll property.

In contrast, an admin prohibition can be represented as
a tuple (s,t,o,p), which implies that user s (supervisor) is
authorized to specify filtering policies for the privilege p
applying to the target user t and to object o. Differently
from previous authorizations, admin prohibitions can not
be represented as properties in that they do not represent a
binary relationship. For that reason, we decide to model ad-
min prohibitions as an OWL class Prohibition. This makes
us able to specify all the components of the prohibition as
class properties. More precisely, given an admin prohibi-
tion (s,t,o,p), we can model the authorized supervisor has
an object property Supervisor between the Prohibition and
Person classes. Similarly, the target user can be represented
as an object property TargetUser between the Prohibition
and Person classes, and the target object as an object prop-
erty TargetObject between the Prohibition and the Resource
classes. In contrast, the privilege over which the supervisor
is authorized to state filtering policies is not represented as
an object property. Indeed, to automatically propagate ad-
min prohibitions we prefer to specify the privilege directly as
the class name. Thus, as an example, instances of the Pro-
hibitionRead class state admin prohibitions authorizing the
specification of filtering policies for the read privilege. By
properly defining subclasses it is possible to automatically
infer new admin prohibitions.

Example 5. Suppose we have a generic Prohibition class
with the subclasses PRead and PView. We then create an-
other subclass of each of these as PAll. Suppose we have two
individuals, John and Jane, and John is Jane’s father. In
this scenario, John should be allowed to filter what videos
his daughter is able to see. That is, we have a prohibition
(“John”, “Jane”, Video, PAll). Now, for any video and any
permission, John can disallow those that he wishes.

5.2 Security Rules
The proposed framework translates each security policy as

a SWRL security rule where the antecedent encodes the con-
ditions specified in the policy (e.g., conditions denoting the
subject and object specifications), whereas the consequent
encodes the implied authorizations or prohibitions. In par-
ticular, since we model security rules as SWRL rules, the
SWRL body states policy conditions over the SNKB, i.e.,
conditions on ontologies introduced in Section 3, whereas
the SWRL head entails new instances of the SAKB, i.e., in-
stances of the ontology introduced in Section 5.1. As a con-
sequence, the specification of SWRL security rules is strictly
bound to the ontologies supported by the OSN to model SN
and SA knowledge bases. This implies that it is not possi-
ble to provide a formalization of generic SWRL rules, since
these can vary based on the considered ontologies. In con-
trast, in this section, we aim to present some meaningful
examples of possible SWRL security rules defined on top of
ontologies adopted in our framework.

We start by considering the admin policy stating that the
owner of an object is authorized to specify access control
policies for that object. The corresponding SWRL rule de-
fined according to the ontologies presented in the previous
sections is the following:

Owns(?grantor, ?targetObject)=⇒ AdminAll(?grantor,

?targetObject)

The evaluation of the above rule has the result of gener-
ating a different instance of the object property AdminAll
for each pairs of user and corresponding owned resource. It
is relevant to note that this authorization is propagated ac-
cording to the ontology modeling the SAKB. Thus, since
the framework exploits the one introduced in Section 5.1,
the above authorization is propagated also to AdminRead
and AdminWrite.

Another meaningful admin policy for a social network is
the one stating that if a user is tagged to a photo then she
is authorized to specify access control policies for the read
privilege on that photo. This can be encoded by means of
the following SWRL security rule:

Photo(?targetObject) ∧ photoOf(?grantor, ?targetOb-

ject) =⇒ AdminRead(?grantor,?targetObject)

The above rules are interesting examples stressing how in the
proposed framework, it is possible to easily specify admin
policies whose implementation in a non semantic-based ac-
cess control mechanism would require complex policy man-
agement. Indeed, providing the OSN with ontologies model-
ing the relationships between users and resources (e.g., mod-
eling ownership or tagging relationships) makes the SA able
to specify admin policies by simply posing conditions on
the type of the required relationship. In contrast, enforcing
these admin policies in a traditional access control mecha-
nism would require implementing complex policy manage-
ment functionalities, in that it would be required to first
determine all possible relationships between users and re-
sources then to specify admin authorizations for all of them.
Rather in the proposed framework this task is performed by
the reasoner.

Example 6. Table 1 presents some examples of SWRL
security rules. The first security rule encodes a filtering pol-

183

SWRL rule
(1) Video(?targetObject,) ∧ ParentOf(Bob,?controlled) =⇒ PRead(?controlled,?targetObject)
(2) Owner(Bob,?targetObject) ∧ Photo(?targetObject) ∧ Friend(Bob,?targetSubject) =⇒

Read(?targetSubject,?targetObject)
(3) Photo(?targetObject) ∧ photoOf(Alice,?targetObject) ∧ Friend(Alice,?targetSubject) =⇒

Read(?targetSubject,?targetObject)
(4) Photo(?targetObject) ∧ Owns(?owner, ?targetObject) ∧ Friend(?owner, ?targetSubject1)

∧ Friend(?targetSubject1, ?targetSubject2) =⇒ Read(?targetSubject2, ?targetObject)

Table 1: Examples of SWRL security rules

icy stating that Bob’s children can not access videos. Once
this rule is evaluated, an instance of prohibition for each of
Bob’s children and video resource is created. In contrast, the
second security rule corresponds to an access control policy
stated by Bob to limit the read access to his photos only to
his direct friend, whereas the third encodes an access control
policy specifying that photos where Alice is tagged can be ac-
cessed by her direct friends. Finally, the fourth rule specifies
that if a person has a photo, then friends of their friends (an
indirect relationship) can view that photo.

6. SECURITY RULE ENFORCEMENT
Our framework acts like a traditional access control mech-

anism, where a reference monitor evaluates a request by
looking for an authorization granting or denying the request.
Exploiting this principle in the proposed framework implies
retrieving the authorizations/prohibitions by querying the
SAKB ontology. Thus, for example, to verify whether a
user u is authorized to specify access control policies for the
read privilege on object o, it is necessary to verify if the in-
stance AdminRead(u,o) is in the ontology, i.e., to perform
an instance checking. This implies that before any possible
requests evaluation all the SWRL rules encoding security
policies have to be evaluated, thus to infer all access con-
trol/admin authorizations as well as all prohibitions. For
this reason, before policy enforcement it is required to ex-
ecute a preliminary phase, called policy refinement. This
phase aims to populate the SAKB with the inferred autho-
rizations/prohibitions, by executing all the SWRL rules en-
coding security policies.

Once authorizations/prohibitions are inferred, security pol-
icy enforcement can be carried out. In particular, access
control and filtering policies are evaluated upon an access
request is submitted, whereas admin policies are evaluated
when an admin request is submitted. In the following, we
present both the request evaluation by showing how the cor-
responding policies are enforced.

6.1 Admin request evaluation
An admin request consists of two pieces of information:

the name of the grantor, i.e., the user that has submitted
the admin request, and the access control or filtering policy
the grantor would like to specify, encoded as SWRL rule,
that is, the submitted SWRL. The submitted SWRL has to
be inserted in the system only if there exists an admin au-
thorization in the SAKB for the grantor. For example, if the
submitted rule requires to specify an access control policy
for the read privilege on targetObject, then there must exist
an instance of <grantor, targetObject>:Read. Note that in-
formation about the privilege and the targetObject can be
retrieved directly from the submitted SWRL. Thus, in or-
der to decide whether the request above can be authorized

or not, a possible way is to query the SAKB to retrieve the
corresponding admin authorization, if any. If there exists
an instance, then the submitted SWRL can be evaluated,
otherwise the framework denies to the grantor the admin re-
quest. An alternative way is to rewrite the submitted SWRL
by adding in its body also condition to verify whether there
exists an admin authorization in the SAKB authorizing the
specification of the rule. The following example will clarify
the underlying idea.

Example 7. Let us assume that the system receives the
following admin request: {Bob, SWRL1}, where SWRL1 is
the following:

SWRL1: Owns(Bob,?targetObject) ∧ Photo(?targetObject)

∧ Friend(Bob,?targetSubject)

=⇒ Read(?targetSubject,?targetObject)

In order to determine the result of the admin request, the
framework has to verify the existence of <Bob,targetObject>:
AdminRead instance in the SAKB. This check can be incor-
porated in the body of SWRL1 by simply modifying it as fol-
lows:

New_SWRL1: AdminRead(Bob,?targetObject) ∧
Owns(Bob,?targetObject) ∧ Photo(?targetObject) ∧
Friend(Bob,?targetSubject)

=⇒ Read(?targetSubject, ?targetObject)

Then New SWRL1 is evaluated with the consequence that
Read access control authorizations will be inserted in SAKB
only if Bob is authorized to specify them by an admin policy.

In case of an admin request submitting a filtering policy,
to decide whether the grantor is authorized to specify that
policy, a search is required in the Prohibitions class (i.e.,
the subclass corresponding to the action the filtering pol-
icy requires to prohibit) for an instance having the property
Grantor equal to the grantor and the properties Controlled
and TargetObject equal to the controlled and TargetObject
specified in the head of the submitted SWRL rule, respec-
tively. Also in this case, we can adopt an approach based
on SWRL rewriting.

Example 8. Let us assume that the framework receives
the following admin request: {Bob, SWRL2}, where SWRL2

is the following:

SWRL2: Video(?targetObject) ∧ ParentOf(Bob,?control-

led) =⇒ PRead(?controlled,?targetObject)

Then, the system can modify the submitted SWRL as:

New_SWRL2: PRead(?p) ∧ Grantor(?p,Bob) ∧ Con-
trolled(?p,?controlled) ∧ TargetObject(?p,?targetOb-

184

ject) ∧ Video(?targetObject) ∧ ParentOf(Bob,?control-

led) =⇒ PRead(?controlled,?targetObject)

whose evaluation has the effect to insert instances of PRead
property (i.e., read prohibitions) only if there exists an Ad-
min Prohibition (Bob,c,o,Read), where c is Bob’s children,
and o is a video resource. Note that this is valid also if the
submitted SWRL explicitly specifies the name of the con-
trolled user (e.g.,.... =⇒ PRead(Alice,?targetObject)).

6.2 Access request evaluation
In general, an access request can be modeled as a triple

(u, p, URI), which means that a user u requests to execute
the privilege p on the resource located at URI . To evalu-
ate this request the framework has to verify whether there
exists an access control authorization granting p on URI to
requester r. However, since the proposed system also sup-
ports filtering policies, the presence of such an authorization
does not necessarily imply that r is authorized to access URI
because there could be a prohibition denying access to the
resource to the user. Thus, to evaluate whether an access
request has to be granted or denied, it is necessary to per-
form two queries to the SAKB. The first to retrieve autho-
rizations and the second to retrieve prohibitions. More pre-
cisely, if u requires the read privilege Read, the system has
to query the instances of object property Read and PRead.
In particular, both the queries look for instance <u,URI>
(i.e.,<u,URI>:Read and <u,URI>:PRead). Then, the ac-
cess is granted if the first query returns an instance and the
second returns the empty set. It is denied otherwise.

Example 9. Consider again Example 5, with the addi-
tion of a person named “Susan”. Susan is a friend of Jane
and has posted a video which she allows to be seen by all of
her friends. However, Jane’s father prohibits her from view-
ing videos. When a request is made by Jane to see Susan’s
video, the authorization and the prohibition queries are per-
formed. The authorization query returns a Read permission,
but the prohibition query returns a PRead. This means that
Jane will be unable to view the video.

7. FRAMEWORK ARCHITECTURE
In our proposed framework, we plan to build several lay-

ers on top of the existing online social network applica-
tion. We plan to implement our prototype using Java based
open source semantic web application development frame-
work called JENA 3, since it offers an easy to use program-
matic environment for implementing the ideas discussed in
this paper. Here, we describe each of these layers indepen-
dently, as well as the motivation behind choosing specific
technologies in our framework. While we use specific in-
stances of Facebook as the over-arching application utilizing
the lower level semantic layers, any social network applica-
tion could be modified to use the design we describe here.

7.1 RDF Datastore
We assume the use of a general RDF triple-store to hold

the underlying data. In this representation, all facts about
an entity are recorded as a triple of the form <Subject, Pred-
icate, Object>. So, suppose we have an individual named
John Smith, who is assigned a unique identifier 999999,

3http://jena.sourceforge.net/

would give us the tuple <999999, foaf:Name,“John Smith”>.
We plan to use a similar format in a separate table to store a
list of authorizations so that we do not have to re-infer them
each time an authorization is requested. For the data stor-
age system, we plan to use MySQL because of its availability
and because of its ease of interface with JENA.

We note here that an RDF datastore differs from a re-
lational database in that there is no database method of
ensuring that constraints are maintained on the ontology as
a whole, such as making sure that a defined Person has a
name. The database representation of this fact is no differ-
ent than the non-essential statement that the person lives in
Albuquerque. However, we plan to use OWL-DL statements
to define these constraints, and then allow the RDF/OWL
engine to enforce the constraints as described below.

7.2 Reasoner
Any reasoner that supports SWRL rules can be used to

perform the inferences described in this paper. However, we
chose SweetRules4 because it interfaces with JENA and has
a rule-based inference engine. This means that we can use
both forward and backward chaining in order to improve
the efficiency of reasoning for enforcing our access control
policies. Forward chaining is an inference method where
the engine will begin with the data provided and look at
the established inference rules in an attempt to derive fur-
ther information. This can be used when the system needs
to infer permissions on a large scale, such as when a re-
source is added for the first time. At this point, there will
be a large one-time addition of authorizations to the allowed
list of users. However, later, after other friends are added,
checking to see if a user has access to a limited number of re-
sources can be done through backward chaining. Basically,
in backward chaining, we begin with the desired goal (e.g.,
goal is to infer whether “John have permission to see the
photo album A”), and check whether it is explicitly stated
or whether it could be inferred by some other rules in a
recursive fashion. Obviously, this will allow a result to be
inferred about an individual (e.g., John) without re-checking
all other individuals.

In [11], Mika proposes a basic general social network,
called Flink, based on a semantic datastore using a similar
framework to that we have proposed, but using several differ-
ent specific semantic technologies. However, he does specify
that their implementation, using backwards- and forward-
chaining is efficiently scalable to millions of tuples, which
provides an evidence of the viability of our proposed scheme.

7.3 RDF/OWL engine
For the RDF/OWL interface, we chose to use the JENA

API. We use this to translate the data between the appli-
cation and the underlying data store. JENA has several
important features that were considered in its use. First, it
is compatible with SweetRules. Secondly, it supports OWL-
DL reasoning which we could use to verify that the data is
consistent with the OWL restrictions on the ontology. The
OWL restrictions are simple cardinality and domain/range
constraints such as every person has to have a name and
must belong to at least one network. To enforce these con-
straints, we plan to have the application layer pass the state-
ments to be entered about an individual until all have been
collected. We then have JENA insert these statements into

4http://sweetrules.projects.semwebcentral.org/

185

the database and then check the new model for consistency.
If there are any constraints that have been violated, then we
pass this information back to the social network application
and have it gather the required information from the user.

8. CONCLUSIONS
In this paper, we have proposed an extensible fine grained

on-line social network access control model based on seman-
tic web tools. In addition, we propose authorization, ad-
min and filtering policies that are modeled using OWL and
SWRL. The architecture of a framework in support of this
model has also been presented. We intend to extend this
work toward several directions. A first direction arises by
the fact that supporting flexible admin policies could bring
the system to a scenario where several access control policies
specified by distinct users can be applied to the same re-
source. Indeed, in our framework social network’s resources
could be related to different users according to the supported
ontology. For example, a given photo could be connected to
the owner, say Bob, as well as to all users with which is
tagged with, say Alice and Carl. According to the seman-
tics of admin policies, it could be the case that some of these
tagged users are authorized to specify access control policies
for that resource, say only Alice. For example, Alice could
have specified that the photos tagged to her can be accessed
only by her direct friends, whereas Bob could have speci-
fied that his photos have to be accessed by his direct friend
and colleagues. In order to enforce access control the frame-
work have to decide how the specified access control policies
have to be combined together. As such, a first important
extension of the proposed framework will be the support of
a variety of policy integration strategies. As a further im-
portant future work, we plan to implement our framework
using the ideas discussed in Section 7 and test the efficiency
of various ways of combining forward and backward chaining
based reasoning for different scenarios.

9. ACKNOWLEDGMENTS
This work was partially supported by National Science

Foundation Grants Career-0845803, CNS-0716424 and Air
Force Office of Scientific Research MURI Grant FA9550-08-
1-0265.

10. REFERENCES
[1] B. Ali, W. Villegas, and M. Maheswaran. A trust

based approach for protecting user data in social
networks. In 2007 Conference of the Center for
Advanced Studies on Collaborative research
(CASCON’07), pages 288–293, 2007.

[2] S. Berteau. Facebook’s misrepresentation of Beacon’s
threat to privacy: Tracking users who opt out or are
not logged in. CA Security Advisor Research Blog,
Mar. 2007.

[3] D. Brickley and L. Miller. FOAF vocabulary
specification 0.91. RDF Vocabulary Specification,
Nov. 2007. Available at http://xmlns.com/foaf/0.1.

[4] B. Carminati, E. Ferrari, and A. Perego. Enforcing
Access Control in Web-based Social Networks. ACM
Transactions on Information & System Security, 2008.
To appear, 4(3):191–233, 2001.

[5] B. Carminati, E. Ferrari, and A. Perego. Security and
privacy in social networks. In M. Khosrow-Pour,

editor, Encyclopedia of Information Science and
Technology, 2nd Edition, volume VII, pages
3369–3376. IGI Publishing, Sept. 2008.

[6] H.-C. Choi, S. R. Kruk, S. Grzonkowski,
K. Stankiewicz, B. Davis, and J. G. Breslin. Trust
models for community aware identity management. In
Identity, Reference, and the Web Workshop
(IRW 2006), 2006. Available at: http:

//www.ibiblio.org/hhalpin/irw2006/skruk.pdf.

[7] N. Elahi, M. M. R. Chowdhury, and J. Noll. Semantic
access control in web based communities. In ICCGI
’08: Proceedings of the 2008 The Third International
Multi-Conference on Computing in the Global
Information Technology (iccgi 2008), pages 131–136,
Washington, DC, USA, 2008. IEEE Computer Society.

[8] T. W. Finin, A. Joshi, L. Kagal, J. Niu, R. S. Sandhu,
W. H. Winsborough, and B. M. Thuraisingham.
Rowlbac: representing role based access control in
owl. In SACMAT, pages 73–82, 2008.

[9] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web rule
language combining OWL and RuleML. W3C Member
Submission, World Wide Web Consortium, May 2004.
Available at: http://www.w3.org/Submission/SWRL.

[10] S. R. Kruk, S. Grzonkowski, H.-C. Choi,
T. Woroniecki, and A. Gzella. D-FOAF: Distributed
identity management with access rights delegation. In
Proceedings of the 1st Asian Semantic Web
Conference (ASWC 2006), LNCS 4185, pages
140–154. Springer Verlag, 2006.

[11] P. Mika. Social Networks and the Semantic Web,
volume 5 of Semantic Web And Beyond Computing
for Human Experience. Springer, 2007.

[12] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari,
N. Suri, and A. Uszok. Semantic Web Languages for
Policy Representation and Reasoning: A Comparison
of KAoS, Rei, and Ponder. 2003.

[13] World Wide Web Consortium. Defining n-ary relations
on the semantic web, 2006. Available at:
http://www.w3.org/TR/swbp-n-aryRelations/.

[14] World Wide Web Consortium. Status for resource
description framework (rdf) model and syntax
specification. Available at: http://www.w3.org/1999/
.status/PR-rdf-syntax-19990105/status.

[15] M. I. Yagüe, M. del-mar Gallardo, and A. Maña.
Semantic access control model: A formal specification.
In ESORICS 2005, pages 24–43, 2005.

186

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

