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1 Bimatrix Games

These are two person non-zero(constant)-sum games in which each

player has finitely many pure strategies. We call these non-zero(constant)-

sum games because the interests of the players is not required to be exactly

opposed to each other. Of course, these include zero(constant)-sum games

and are a true generalization of zero(constant)-sum games. But the methods

used to analyze them are different. They also bring our many more difficul-

ties as shown in the initial part. Suppose player 1 has  pure strategies

and player 2 has  pure strategies. Let  be an ×  matrix representing

payoffs to player 1and similarly let  be an  ×  matrix representing the

payoff matrix to player 2. If + = 0() where the right side is an ×

matrix all of whose entries are zero( is a matrix all of whose entries are

equal to 1 and  is a number), then we have the zero(constant)-sum case.

Else we have the non-zero(constant)-sum case. A pair of (mixed) strategies

∗ ∈  = { :  ≥ 0;P

=1  = 1} and ∗ ∈  = { :  ≥ 0;P

=1  = 1}
which satisfy the relations:

(∗)∗ ≥ ∗ ∀ ∈ 

(∗)∗ ≥ (∗) ∀ ∈ 

is called a Nash equilibrium. J. Nash showed that these exist as in the

following theorem. His proof uses the well known Brower fixed point theorem.

[There are other fixed point theorems that are more powerful and can extend

these results]

Theorem 1 (Brower) Let  :  →  be a continuous function that maps a

compact convex set  ⊆  to itself. Then there is a point  ∈  such that

 () = . Such a point is called a fixed point for  .
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Theorem 2 Every bimatrix game has at least one equilibrium point.

Proof. (Owen, Luce and Raiffa): Let  and  be any pair of mixed strategies

for the bimatrix game (). Define:

 = max[ −  0]; 1 ≤  ≤ 

 = max[
 −  0]; 1 ≤  ≤ 

0 =
 + 

1 +
P

=1 
1 ≤  ≤ 

0 =
 + 

1 +
P

=1 
1 ≤  ≤ 

Think of the transformation  by the relation:

 ( ) = (0 0)

Such a  is clearly continuous and maps × to itself [show this]. If ( )

is an equilibrium pair of strategies,  ≥ () =  and so  = 0 for

all . [Here  denotes the unit vector with a 1 in the 
 position.] Similarly,

 = 0 for all . Hence, (
0 0) = ( ) for such a pair. Hence equilibrium

pairs of strategies are fixed points of this transformation. Now we show the

converse is also true.

Proof. Since both  and  are compact convex sets so is the Cartesian

product. Hence we can apply Brower fixed point theorem and there is fixed

point. Let us denote the fixed point by (∗ ∗). Now we use the relations that
 (∗ ∗) = (∗ ∗) to show that these are an equilibrium pair of strategies

for the game.

∗ =
∗ + ∗

1 +
P

=1 
∗


1 ≤  ≤ 

∗ =
∗ + ∗

1 +
P

=1 
∗


1 ≤  ≤ 

where

∗ = max[
∗ − (∗)∗ 0]; 1 ≤  ≤ 

∗ = max[
 − (∗)∗ 0]; 1 ≤  ≤ 
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Claim 3 If (∗ ∗) is not an equilibrium pair of strategies, at least one of

the values of ∗ or one of the values of 
∗
 is strictly positive.

Proof. If the claim is not true, then it follows that

(∗)∗ ≥ 
∗ = ()

∗ for 1 ≤  ≤ 

Multiplying the the  of these inequalities by ∗ and adding [this is permitted
since ∗ ≥ 0], we get

(∗)∗ ≥ ∗ ∀ ∈ 

Similarly we can show that

(∗)∗ ≥ (∗) ∀ ∈ 

Proof. (of the main theorem continued): Suppose without loss some ∗ 

0 (equivalently 
∗  (∗)∗). Hence

P

=1 
∗
  0. But (∗)∗ is

weighted average of {
∗}=1. Hence, there is some other index  such that


∗  (∗)∗

∗  0

So, ∗ = 0 and hence

0 =
∗

1 +
P

=1 
∗


 ∗

and therefore 0 6= ∗. If instead some ∗  0, we will show that 
0 6= ∗. In

either case this will not be a fixed point of this transformation. Hence fixed

points are equilibrium pairs and therefore equilibrium pairs of strategies exist

for any bimatrix game. Proof of existence of a Nash equilibrium for -person

games is similar.

There is alternate proof based on Kakutani’s fixed point theorem. This

is based on the fact that in these games, the set of best response for player 

against a strategy profile of the remaining players is a compact convex set (

it is also polyhedral if the set of pure strategies of each player is finite). This

is exercise 2.4 in your homework assignments.

Here is the proof:

Proof. Let (1 2  ) be a mixed strategy profile. [Note that each of

these vectors  is finite dimensional.]Let (1 2  ) be the set of "best
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responses" for player  against −. Recall from HW 2.4, that these sets 

are compact convex sets. Hence 1×2× × is also a compact convex

set. Consider the correspondence

(1 2  )→ 1 ×2 × ×

It maps a strategy profile to a compact convex subset of strategy profiles. It

is also upper-hemi-continuous (see definition below). Hence by Kakutani’s

theorem, ∃ a strategy profile (1 2  ) which is a fixed point of this
correspondence. This clearly is a Nash equilibrium.

Definition 4 A correspondence Γ : →  is said to be upper hemicontinous

at the point  ∈  if for any open neighborhood  of Γ(), there exists a

neighborhood  of  such that Γ() is a subset of  for all  ∈  .

Definition 5 The graph of a correspondence Γ :  →  is the set {( ) :
 ∈ Γ(); ∈   ∈ }. This graph is said to be closed if the set is closed.
If the sets ,  are compact and Γ() is closed for each  this concept is

equivalent to upper hemicontinuity. It is this that is used to assure that the

conditions of Kakutani’s theorem are valid for our case.

Pairs of strategies (∗ ∗)that solve

min(∗) = max
∈

min




max∗ = max
∈

min
∈



do not necessarily form Nash equilibrium pairs for a bimatrix game.

The computational problem of finding these equilibrium pairs for a bima-

trix game was "solved" by formulating it as a special case of the well known

"Linear Complementarity Problem" proposed by Lemke and Howson. The

general LCP has many other applications (see book by R.W. Cottle, J.S.

Pang and R.E. Stone). Lemke- Howson algorithm is a finite algorithm but

it is not guaranteed to be polynomially bounded — indeed no such algorithm

is known.
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1.0.1 Linear Complementarity Problem (LCP) &Bimatrix Games

Given a matrix  ∈ ×, a vector  ∈ , the linear complementarity

problem is to find vectors   ∈  satisfying the relations:

 = + 

 ≥ 0;  ≥ 0
 = 0

Please note that [ ≥ 0;  ≥ 0; = 0] ⇔ [  0 ⇒  = 0;   0 ⇒
 = 0]; hence, at most one of each pair { } can be nonzero. This is the
reason for the term "complementary" in the name of the problem. For this

formulation, it is more convenient to think of the payoff matrices as "loss"

matrices. Let [ ] represent the loss to player 1 and 2 respectively if

player 1 uses pure strategy  and player 2 uses pure strategy . Then, a pair

of mixed strategies (∗ ∗) are a Nash equilibrium pair if they satisfy the

relations:

(∗)∗ ≤ ∗ ∀ ∈ 

(∗)∗ ≤ (∗) ∀ ∈ 

This is equivalent to the system:

[(∗)∗] ≤ ∗

[(∗)∗] ≤ ∗

where  and  refer to vector of all 1’s of size  and  respectively. We

can show that this reduces to the linear complementarity problem:

 =  − 

 = − 

 ≥ 0;  ≥ 0; ≥ 0;  ≥ 0
 = 0;  = 0

or equivalently the problem:

 = + 

 ≥ 0;  ≥ 0
 = 0
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with

 =
0 

 0
;  =

−
−

 =



;  =





To show the equivalence, suppose (∗ ∗) is an equilibrium pair of strategies.
So clearly, ∗ ≥ 0; ∗ ≥ 0. Suppose (and we will show that this is without
loss of generality) that   0;  0. Let

 =
∗

(∗)∗

 =
∗

(∗)∗

 =  − 

 =  = 

Since
P

=1 
∗
 = 1 and

P

=1 
∗
 = 1, it follows that (

∗)∗  0; (∗)∗ 
0 by our assumption that   0   0. Thus,  ≥ 0;  ≥ 0. [[(∗)∗] ≤
∗] ⇒ [ ≥ ] and [[(

∗)∗] ≤ ∗] ⇒ [ ≥ ]. Hence  ≥
0;  ≥ 0.

 =
(∗)[ ∗

(∗)∗ − ]

(∗)∗

=
1

(∗)∗
− 1

(∗)∗

= 0

Similarly  = 0. Hence, (   ) is a solution to the LCP.

To do the converse suppose 0 0 0 0 solves the linear complementarity

problem. Clearly, neither 0 nor 0 can be equal to the 0 vector since 0 0

are nonnegative. Hence
P

=1 
0
  0;

P

=1 
0
  0. Now let

∗ =
0P

=1 
0


∗ =
0P

=1 
0
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These are mixed strategies for the two players. Now we show that (∗ ∗) is
a Nash equilibrium pair. To do this, we need to show that

[(∗)∗] ≤ ∗

which is equivalent to showing;

∗ = [
0

()0
] ≥ [(∗)∗] = (0)0

[()0] • [()0]

Since (0 0 0 0) solves the LCP,

0 = (0)0 = (0)[0 − ]

and so

()
0 = (0)0

Similarly,

()
0 = (0)0

∗ = [
0

()0
] ≥ [(∗)∗] = (0)0

[()0] • [()0]
Since 0 = 0 −  ≥ 0, it follows that 0 ≥ . Therefore,

∗ = 
0

()0
≥ [(

0)0

()0
][

1

()0
] = [(

∗)∗]

which is what we set out to prove. Similarly we can show that

∗ ≥ [(∗)∗]
Thus we have shown that (∗ ∗) is an equilibrium pair of strategies.

Lemma 6 Let  and  be "loss" matrices in a bimatrix game. Let  be

a scalar and let  be a matrix of all 1’s of the same size as  and . Let

 =  +  ; =  + . Any equilibrium pair of strategies for the pair

() is also an equilibrium pair of strategies for the pair ().

Proof of this lemma is quite straightforward and left to the reader. If

 is a sufficiently large positive value, then matrices  and  will be pos-

itive matrices and it is in this sense that this assumption is without loss of

generality. It will be a digression to discuss the algorithm of Lemke-Howson

here; suffice it to say that it is a finite procedure but not guaranteed to be

polynomially bounded.
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1.1 Papadimitriou-Daskalakis Formulation:

Here we continue to think of matrices  and  as "gain" or payoff matrices

as usual in Game Theory.

Then, a pair of mixed strategies (∗ ∗) are a Nash equilibrium pair if

they satisfy the relations:

(∗)∗ ≥ ∗ ∀ ∈ 

(∗)∗ ≥ (∗) ∀ ∈ 

This is equivalent to the system:

[(∗)∗] ≥ ∗

[(∗)∗] ≥ ∗

where  and  refer to vector of all 1’s of size and  respectively. We can

show that this reduces to the "modified linear complementarity problem":

+ = 

 + = 

 ≥ 0;  ≥ 0; ≥ 0;  ≥ 0
 = 0;  = 0

or equivalently the problem:

 + = 

 ≥ 0;  ≥ 0
 = 0

with

 =
0 

 0
;  =




 =



;  =





To show the equivalence, suppose (∗ ∗) is an equilibrium pair of strategies.
So clearly, ∗ ª 0; ∗ ª 0. Suppose without loss of generality that  
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0;  0. Let

 =
∗

(∗)∗
ª 0

 =
∗

(∗)∗
ª 0

 = − +  ≥ 0
 = −+  ≥ 0

Since
P

=1 
∗
 = 1 and

P

=1 
∗
 = 1, it follows that (

∗)∗  0; (∗)∗ 
0 by our assumption that   0   0. Thus,  ª 0;  ª 0. [[(∗)∗] ≥
∗] ⇒ [ ≤ ] and [[(

∗)∗] ≥ ∗] ⇒ [ ≤ ]. Hence  ≥
0;  ≥ 0.

 =
(∗)[− ∗

(∗)∗ + ]

(∗)∗

= − 1

(∗)∗
+

1

(∗)∗

= 0

Similarly  = 0. Hence, ( ª 0  ª 0  ≥ 0  ≥ 0) is a solution to the
LCP.

To do the converse suppose 0 ª 0 0 ª 0 0 ≥ 0 0 ≥ 0 solves the linear
complementarity problem. Hence

P

=1 
0
  0;

P

=1 
0
  0. Now let

∗ =
0P

=1 
0


∗ =
0P

=1 
0


These are mixed strategies for the two players. Now we show that (∗ ∗) is
a Nash equilibrium pair. To do this, we need to show that

[(∗)∗] ≥ ∗

which is equivalent to showing;

∗ = [
0

()0
] ≥ [(∗)∗] = (0)0

[()0] • [()0]
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Since (0 0 0 0) solves the LCP,

0 = (0)0 = (0)[−0 + ]

and so

()
0 = (0)0

Similarly,

()
0 = (0)0

∗ = [
0

()0
] ≤ [(∗)∗] = (0)0

[()0] • [()0]
Since 0 = 0 −  ≥ 0, it follows that 0 ≥ . Therefore,

∗ = 
0

()0
≤ [(

0)0

()0
][

1

()0
] = [(

∗)∗]

which is what we set out to prove. Similarly we can show that

∗ ≤ [(∗)∗]
Thus we have shown that (∗ ∗) is an equilibrium pair of strategies.

1.2 Symmetric Games and Symmetrization

An -player game is said to be symmetric if each player’s set  = {1 2  }
of pure strategies is the same and payoff function is the same and equal to

(;1 2  ) where  is the number of players using pure strategy .

Definition 7 A symmetric equilibrium for a symmetric game is a Nash

equilibrium where all players use the same strategy. .

Theorem 8 Nash: There exists a symmetric equilibrium for a symmetric

game.

Proof. In using the fixed point theorem use the set which is the intersection

of product of the sets for each player intersected with the set that requires the

choice of strategies across players to be the same.
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Theorem 9 Every two person game is equivalent to two person symmetric

game.

Proof. Let the bimatrix game have payoff matrices  and . Without loss of

generality, we may assume that   0 and   0. Consider the symmetric

game with matrices  and  where

 =
0 

 0

By theorem above, this game has a symmetric Nash equilibrium ∗ =

∙
∗

∗

¸
Claim 10 ∗ ª 0; ∗ ª 0
Proof. Suppose ∗ = 0 or ∗ = 0. Consider Player I using strategy  =∙




¸
with  ª 0;  ª 0 against Player II using ∗ = (∗ ∗).

(∗)∗ = (∗)∗ + (∗)∗ = 0

 ()∗ + (∗)

The last of these follows from   0   0 and  ª 0  ª 0. This would
lead to a contradiction that ∗ is a Nash equilibrium. Hence the claim.
Proof. (continued) Let

̄ =
∗

()∗

̄ =
∗

()∗

1 =

∙
̄

0

¸
; 2 =

∙
0

̄

¸
Using the fact that ∗ is the best response to ∗, we can obtain that 1 is the
best response to 2 and hence (̄ ̄) is a Nash equilibrium for the original

game.
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1.3 Computing Equilibrium in Two-person Symmetric

Game[P,D]

Let  be the square matrix  in the above discussion; for this discussion,

assume that size of this matrix is × . Consider the system;

 ≤ 

 ≥ 0
Let• denote the  row of this matrix. Without loss, we may assume that
elements of this matrix are nonnegative with no zero rows or zero columns.

This implies that  = { ∈  :  ≥ 0; ≤ } is nonempty and bounded
and closed.  is said to be nondegenerate if at each vertex exactly  of

these 2 inequalities are tight. By small perturbation, we can make any

such polyhedron nondegenerate and we will assume this is the case from now

on. Each vertex of this polytope is described by its tight constraints in the

following manner: We use the index  as many times as the number of tight

constraints among {• = 1;  = 0}. For example, if1• = 1 and 1 = 0
and 2 = 0 but 2•  1, this vertex will be denoted by {1 1 2}. So every
vertex has  components. If a vertex has the label {1 2  } (i.e. all indices
occur once), then one of the following is true: (a) = 0; or (b)the normalized

vector ̄ is a symmetric Nash equilibrium.

To show the existence (and a computation mechanism) for a Nash equi-

librium we do the following:

Select an index  ∈ (1 2  ). Consider the set of all vertices whose
index sets contain all indices from {1 2  } except possibly the index ; call
this set of vertices  . Each vertex in the polytope has exactly  neighbors

obtained by relaxing one of the tight constraints. So for a vertex in  that

contains all indices, there is only one neighbor in  ; this obtained by relaxing

one of the two constraints for the index  that is tight in this vertex.

Characterize other vertices in  by the index that is repeated say .

There are two constraints corresponding to index ;• = 1 and  = 0.

Hence the vertex in  that has index  repeated has exactly two neighbors

in  . The adjacency graph in  has degree 2 for vertices that do not have

all indices and degree equal to 1 for those that have all indices represented.

So if start at  = 0 which has all indices represented and move along this

graph we must reach another vertex with all indices represented which must

correspond to a symmetric Nash equilibrium! The process is finite because

the size of  is finite. This is the crux of C.E. Lemke’s algorithm.
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