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1 Extensive Forms

A game tree (a rooted tree) consists of a finite set of nodes or vertices, (one
of which is the root) and a set of pairs of nodes called edges. There are
no simple closed loops in this structure and so it is called a tree. There is a
direction (sort of) imposed by the root A. A vertex C follows (is a descendant
of) another vertex B if the vertex B occurs on the unique path from A to
C. If C follows B and there is no intermediate vertex between them on the
path from A, then we think of (B,C) as an edge of the tree and we say C
follows B immediately. A vertex is a terminal vertex (or a leaf node) if no
vertex follows it.

Definition 1 By an n-person game in extensive form is meant:

1. a (directed) tree Γ with a distinguished vertex A called the starting point
of the game depicted by Γ (this is the root of the tree).

2. a function, called the payoff function, which assigns an n−vector to
each terminal vertex of the tree Γ.

3. a partition of the nonterminal vertices of Γ into n+1 sets S0, S1, ..., Sn
called player sets. S0 refers to those sets when chance (nature) plays a
role.

4. a probability distribution, defined at each vertex of the set S0, over its
immediate followers.

5. for each i = 1, 2, ..., n, a subpartition of Si into subsets S
j
i , called in-

formation set such that the vertices in the same information sets have
the same number of immediate followers and that no vertex can follow
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another in the same information set. We should not be able to dis-
tinguish between two vertices in the same information set of a player.
This is because a player might not know the actions in that round of
other players when (s)he makes a move.

6. for each information set Sji , an index set I
j
i , together with a one-to-one

mapping of the set Iji onto the set of immediate followers of each vertex
of Sji .

Definition 2 Player i in game Γ is said to have perfect information if
∣∣Sji
∣∣ =

1 for all j. The game Γ is said to have perfect information if each player has
perfect information in Γ.

1.1 Games in Normal/Strategic Form

The notion of a "Book of Game Plans" that specifies for each possible situ-
ation that a player finds himself in is called a "strategy. More formally:

Definition 3 By a strategy for player i is meant a function which assigns
to each of player i’s information sets Sji , one of the edges that follows a
representative vertex [please note that in any of these vertices it is the cor-
responding follower that will be chosen]. The set of all strategies for player i
will be denoted by Σi.

We denote by the vector π(σ1, σ2, ..., σn) ∈ R
n the payoff (expected payoff

if there are chance moves) if player i selects strategy σi ∈ Σi for i = 1, 2, ..., n.
πi(σ1, σ2, ..., σn) is the payoff to ith player for this combination. This n-
dimensional array of "numbers" is called the "normal/strategic form" of the
game Γ. It is assumed in this form that this array is known to all in the
game with complete information.

Definition 4 Γ is said to be finite if it has finite number of nodes.

Definition 5 A game Γ is said to decompose at a vertex v if there are no
information sets which have vertices from both {followers of v} and the rest
of the game tree. The (sub)game represented by v and its followers is denoted
by Γv and the game representing the remaining part tree of Γ with v replaced
by Γv is denoted by Γ/v. The payoff in Γ/v at the vertex that replaces v (now
a terminal vertex) is the subgame Γv.
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If we decompose a game at v, then we can decompose the strategy σ
into two parts: σΓ/v by restricting σ to information sets in Γv , and σΓv by
doing the same on σ for Γv. Conversely such parts can be combined to get
an overall strategy for the whole game. We will come back to this when we
show that every game with perfect information has an equilibrium (whatever
this means!).

Domination and Iterated Domination

Definition 6 A strategy σi for player i is dominated by strategy σ
′
i, if

πi(σ1, σ2, ...σi−1, σi, σi+1, ..., σn) < πi(σ1, σ2, ...σi−1, σ
′
i, σi+1, ..., σn)∀σj ∈ Σj; j �= i

It is argued that "rational" players do not play dominated strategies,
because there is no belief that a player could hold about the strategies of
other players such that it would be optimal to play such a strategy.

Example 1 Consider a two player game with two strategies for each player
commonly referred to as the Prisoner’s Dilemma: [See the complementary
issue discussed later].

1 ↓ 2→ Mum Fink
Mum [−1,−1] [−9, 0]
Fink [0,−9] [−6,−6]

Fink dominates Mum for each player. So it is argued by this theory that
rational players will choose [Fink,Fink] combination.

Example 2 (TF Book)

1 ↓ 2→ L R
U [1, 3] [4, 1]
D [0, 2] [3, 4]

For player 1, U dominates D for player 2 (after D is eliminated by player 1),
L dominates R. So the theory of this type (assuming that players eliminate
dominated strategies and both know this of the other) predicts the outcome
(U,L). Suppose however, player 1 changes his payoff for (U,L) to −1 and
that of (U,R) to 2, so that the game looks like:

1 ↓ 2→ L R
U [−1, 3] [2, 1]
D [0, 2] [3, 4]
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Now D dominates U for player 1 and player 2 knowing this, has R dominating
L. So now the predicted outcome is (D,R)! This yields more to player 1 than
(U,L) in both games and so there is an incentive for players to "fudge" the
payoff values if they can get away with this. It is not sufficient to change
one’s payoff values but you need to let the other player know this !

Example 3 Consider the following game:

1 ↓ 2→ Left Middle Right
Up [1, 0] [1, 2] [0, 1]
Down [0, 3] [0, 1] [2, 0]

To begin with, neither strategy dominates other for player 1. However, for
player 2, Middle dominates Right. So one argues that if player 2 is "rational",
(s)he will not play Right. If player 1 "knows" that player 2 is a "rational"
player who will not play the dominated strategy Right, player 1 now looks at
the reduced game:

1 ↓ 2→ Left Middle
Up [1, 0] [1, 2]
Down [0, 3] [0, 1]

and finds that Down is dominated by Up. So if player 1 is a "rational" player,
he will not play Down. So the game reduces further to:

1 ↓ 2→ Left Middle
Up [1, 0] [1, 2]

Now Middle dominates left for player 2 and so we arrive at the combina-
tion [Up,Middle] as the final outcome if both players are rational and each
knows that the other is rational. This process is called "iterated elimination
of strictly dominated strategies". If we want to do this arbitrary number of
times, we assume "common knowledge" that players are rational and both
know this of each other and both know that of each other and so on. But in
a game given below this does not produce any outcome since no strategy is
dominated:

1 ↓ 2→ L C R
T [0, 4] [4, 0] [5, 3]
M [4, 0] [0, 4] [5, 3]
B [3, 5] [3, 5] [6, 6]
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A complementary question is also of interest. If there is no belief that
player i could hold (about the strategies that the other players will choose)
such that it would be optimal to play the strategy σi, can we conclude that
there must be another strategy for player i that strictly dominates σi? [See
mixed strategies for an answer to this question].

Example 4 (TF Book): Second Price Auction: A seller has an object for
sale. There are n buyers interested in buying this from the seller. The value
of the object for ith buyer is vi and we suppose that the players are numbered
so that 0 ≤ v1 ≤ v2 ≤ ... ≤ vn and all buyers know the value of the object to
all buyers. This is called "common knowledge". Buyer i submits a sealed bid
si ∈ [0,∞) which is the amount he is willing to pay the seller for the object.
The buyer who "bids" the highest "wins" the "auction" but pays the "bid" by
the second highest bidder. If bidder i "wins" (and hence si > maxj �=i sj) the
auction, he gains an amount ui = vi−maxj �=i sj. The remaining bidders pay
nothing and do not get the object and hence they gain 0. If several bidders
have the highest bid, the winner is "randomly" chosen among them. We
analyze this problem in what follows.

Let maxj �=i sj = ri. If player i bids si > vi, then his gain is 0 if ri > si.
In this case his gain is 0 even if he bids vi. So bidding vi (weakly) dominates
bidding si. If ri < si, his gain is vi − ri and he gains the same amount even
if he bids vi. Again bidding vi dominates (weakly) bidding si. Thus, any
bid higher than vi is dominated (weakly) by the bid of vi. If player i bids
si < vi :If ri > vi, then his gain is 0; but his gain would be the same if he
bid vi. If ri < si his gain is vi − ri and it would be the same if he bid vi. If
si < ri < vi, his gain is 0 where as it is vi − ri > 0 if he bids vi. Thus again
the bid of vi dominates the bid of si. Thus the only undominated bid is vi
for player i. Hence player n "wins" the auction and his gain is vn − vn−1.
Bidding in auctions are very important applications of game theory.

Unfortunately, domination alone is not sufficient to arrive at a solution
as in the game:

1 ↓ 2→ L R
U [−1, 1] [0, 0]
D [0, 0] [−1, 1]

where there is no domination. A stronger concept follows.
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(Cournot) Nash Equilibrium

Definition 7 Given a game Γ in strategic form, a set of strategies (σ∗1, σ
∗
2, ..., σ

∗
n)

is said to be "in equilibrium" or an equilibrium n-tuple of strategies ,if and
only if

πi(σ
∗
1, σ

∗
2, ...σ

∗
i−1, σi, σ

∗
i+1, ..., σ

∗
n) ≤ πi(σ

∗
1, σ

∗
2, ...σ

∗
i−1, σ

∗
i , σ

∗
i+1, ..., σ

∗
n)∀σi ∈ Σi; ∀i

In other words, no single player has an incentive to move away from the
equilibrium strategy, assuming all others stick to their part of the equilibrium.
Such an idea is often referred to as "self-enforcing" or "strategically stable".
In two person zero-sum games these are also known as "saddle points".

Players’ strategies that are part of some Nash equilibrium survive the
iterated elimination process of removing dominated strategies. In the case
of Prisoners’ Dilemma there is only one Nash equilibrium — Fink-Fink. But
there are games as the one below (known as the Battle of the Sexes") that
have multiple Nash equilibria:

1 ↓ 2→ Opera Ballgame
Opera [2, 1] [0, 0]
Ballgame [0, 0] [1, 2]

So we may need to develop concepts that select among Nash equilibria. So far
we have games that have zero, one, or many Nash equilibria among "pure"
strategies. We extend the set of strategies to avoid the nonexistence problem.

The reason for calling these "equilibrium points" is that if one changes
the strategies by a "small" perturbation, incentives on rationality will bring
the players to equilibrium. The region from which the solution will come
back to a particular equilibrium is known as the region of attraction. This is
what Cournot was originally interested in systems.

Mixed Strategies

Definition 8 A "mixed strategy" for a player is a probability distribution
over his strategies.

Definition 9 A game Γ in strategic form is called a "zero-sum" game if:

n∑

i=1

πi(σ1, σ2, ...σi−1, σi, σi+1, ..., σn) = 0 ∀(σ1, σ2, ...σi−1, σi, σi+1, ..., σn) ∈ Σ1×Σ2×....×Σn
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Games in which

n∑

i=1

πi(σ1, σ2, ...σi−1, σi, σi+1, ..., σn) = c ∀(σ1, σ2, ...σi−1, σi, σi+1, ..., σn) ∈ Σ1×Σ2×....×Σn

where c is a constant are equivalent to zero-sum games and are often called
’strictly competitive" games.

Please note that every game can be made into a zero-sum game by adding
one more player with just one strategy. But our interest is mostly in two
person zero-sum games which have a rich connection with the theory of linear
programming.

1.2 Two Person Zero-sum Games

Here we deal with games in which both players have finite number of pure
strategies. These are often called matrix games since the payoff can be spec-
ified by one matrix A (since the payoff matrix B for the other player is equal
to −A). If the number of pure strategies for the players are m and n respec-
tively, then the matrix A is an m × n matrix. Thus a mixed strategy for
player 1 is the set:

X = {x ∈ Rm : x ≥ 0;
m∑

i=1

xi = 1}

and that for player 2 is the set:

Y = {y ∈ Rn : y ≥ 0;
n∑

j=1

yj = 1}

The (expected) payoff to player 1 (from player 2) given that player 1 selects
x ∈ X and player 2 selects y ∈ Y is given by

xtAy =
m∑

i=1

n∑

j=1

ai,jxiyj
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Guaranteed Payoffs and Minimax Strategies Given a strategy x ∈ X
for player 1, we call

v(x) = min
y∈Y

xtAy =
n

min
j=1

xtA.j =
n

min
j=1

m∑

i=1

ai,jxi

the guaranteed payoff to player 1.

vI = max
x∈X

v(x) = max
x∈X

min
y∈Y

xtAy

is the overall guaranteed payoff to player 1 that he can assure himself against
all possibilities for player 2. The strategy that achieves this value is often
referred to as the "optimal" strategy for player 1. In a similar manner we
can define a strategy for player 2 that maximizes his payoff (or equally in
a zero-sum situation one which minimizes payoff to player 1) by solving the
problem:

vII = min
y∈Y

v(y) = min
y∈Y

max
x∈X

xtAy

where

v(y) = max
x∈X

xtAy =
m
max
i=1

Ai.y =
m
max
i=1

n∑

j=1

ai,jyj

For any function f(x, y) defined over (x, y) ∈ X × Y we have:

max
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

max
x∈X

f(x, y)

and hence vI ≤ vII .
In order to compute these "two" values, we resort to the following linear

programming problems; this also gives us the set of "optimal" strategies (this
is where the name comes from):

xi ≥ 0; i = 1, 2, ...,m
m∑

i=1

xi = 1

m∑

i=1

ai,jxi ≥ vI j = 1, 2, ..., n

max vI
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Here vI is an unrestricted variable (it can take on positive or negative values).
This is for player 1. And for player 2:

yj ≥ 0; j = 1, 2, ..., n
n∑

j=1

yj = 1

n∑

j=1

ai,jyj ≤ vII i = 1, 2, ...,m

min vII

It is straight forward to show that these two linear programs are dual to each
other and that both are feasible. Hence by duality theorem, they both have
optimal solutions (in the linear programming sense) and the values vI and
vII are equal at optimality. That is :

min
y∈Y

max
x∈X

xtAy = max
x∈X

min
y∈Y

xtAy

and this result is known as the minimax theorem due to J. von Neumann.
Thus, every two person zero-sum game reduces to a linear program and this
can be used as a computational model to find optimal strategies for the
players in the game. [Actually the converse is also true that every linear
program can be converted to a two person zero-sum game and in this sense
these two problems are equivalent.] Further, their connection with Nash
equilibrium is quite strong as illustrated by:

Theorem 10 Suppose x∗ and y∗ are optimal solutions to the above pair of
linear programs. Then (i)(x∗, y∗) form a Nash equilibrium pair of strategies
for this game;(ii)Moreover, every pair of Nash equilibrium strategies corre-
sponds to a pair of optimal solutions to this pair of linear programs; (iii) If
(x∗, y∗) and (x∗∗, y∗∗) are equilibrium pairs, the so are (x∗, y∗∗) and (x∗∗, y∗)
also equilibrium pairs; (iv) all equilibria have the same payoffs.

Proof. (i)Since x∗ guarantees v∗I , and y
∗ guarantees ( a loss of no more than)

v∗II = v∗I , it follows that x
∗ is the best response for player I against y∗ for

player II. Similarly y∗ is the best response for player II against x∗ for player
I. Hence (x∗, y∗) is a Nash equilibrium pair of strategies.
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(ii)Suppose (x∗, y∗) is a Nash equilibrium. The it follows that

xtAy∗ ≤ (x∗)tAy∗ ∀x ∈ X

(x∗)tAy ≥ (x∗)tAy∗ ∀y ∈ Y

Hence it follows that

v∗II = (x
∗)tAy∗ ≥

n∑

j=1

ai,jy
∗
j for i = 1, 2, ...,m

n∑

j=1

y∗j = 1

y∗j ≥ 0 for j = 1, 2, ..., n

Hence (y∗, v∗II) is a feasible solution to the dual (Player II ’s LP). Similarly,
(x∗, v∗I ) is a feasible solution to Primal (Player I’s LP). Morevoer, v∗I = v

∗
II

and hence these solutions are respectively optimal to the two LPs.
(iii)Suppose (x∗, y∗) and (x∗∗, y∗∗) are Nash equilibria. By (ii) both x∗ and

x∗∗ are optimal solutions to player I’s LP. Hence both guarantee v∗I . Similarly
both y∗ and y∗∗ guarantee to player II a loss of v∗II . And v

∗
i = v

∗
II . Hence x

∗∗

is a best response to y∗ and y∗ is a best resposne to x∗∗. So (x∗∗, y∗) is also
a Nash equilibrium. Similarly (x∗, y∗∗) is also an equilibrium.

(iv)By above, it follows that (x∗)tAy∗∗ = (x∗∗)tAy∗ = v∗I = v
∗
II.

This works only for two person zero-sum games. So we consider such a
game to be completely solved in some sense. All of these nice properties are
not guaranteed to hold for more general games. Moreover, the methods used
to prove existence for such games are quite different.

Constrained Two Person Zero-sum Games These are games in which
the sets of strategies for the two players are modified as follows:

X = {x ∈ Rm : x ≥ 0;Bx ≤ d}

Y = {y ∈ Rn : y ≥ 0;Ety ≥ f

Player 1 wants to solve the problem maxx∈X miny∈Y x
tAy and player 2 wants

to solve the problem miny∈Y maxx∈X x
tAy to find a pair of strategies that

maximize (resp. minimize) their payoffs. Again such a pair forms a pair
of strategies in Nash equilibrium. To solve this problem player 1 solves the
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following LP: if we let v(x) = miny∈Y x
tAy, then v(x) is the solution to the

linear program:

Ety ≥ f

y ≥ 0

min(xtA)y

By duality theorem, this value also equals the value of the linear program:

Ez ≤ Atx

z ≥ 0

max f tz

Hence maxx∈X v(x) can be found by solving the linear program:

Bx ≤ d

Ez − Atx ≤ 0

x ≥ 0; z ≥ 0

max f tz

Similarly player 2’s problem is miny∈Y maxx∈X x
tAy and if we define v(y) =

maxx∈X x
tAy then v(y) is the solution to the linear program:

Bx ≤ d

x ≥ 0

max(ytAt)x

By duality theorem, this value can be found by solving the linear program

Bts ≥ Ay

s ≥ 0

min dts

Hence miny∈Y v(y) can be solved by

Ety ≥ f

Bts−Ay ≥ 0

y ≥ 0; s ≥ 0

min dts

It should be easy to verify that the final two problems for the two players
are dual to each other in the linear programming sense.
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