Some more NP-C results:

HW#7:

PARTITION

Input: Positive integers x_1, x_2, \ldots, x_n

Q: Is there a subset $S \subseteq \{1, 2, \ldots, n\}$ such that

$$\sum_{i \in S} x_i = \sum_{i \notin S} x_i?$$

[Recall numbers are given in binary].

1. **PARTITION \notin NP**

Verification Certificate for "yes" instance:

S itself given as a 0/1 vector of size n.

Verification Alg. [Poly time alg]

1. Add $\sum_{i \in S} x_i$ in binary (poly in # of bits)

2. Check $\sum_{i \in S} x_i = \sum_{i \notin S} x_i$ in binary (poly in # of bits)

Attempt to give "false" certificates will be "found out" by the above algorithm.
2. \textsc{Partition ENP-C}

\[?^{\text{ENP}}_P \leq_p \text{PARTITION} \]

\[
\downarrow \quad \text{SUBSET-SUM} \quad \downarrow
\]

\[\text{Arbitrary instance} \quad x_1, \ldots, x_n \geq t \]

\[?
\]

Q: Is there \(S \subseteq \{1, 2, \ldots, n\} \)

\[\sum_{i \in S} x_i = t \quad ? \]

Corresponding instance (to be constructed)

\[x_1, x_2, \ldots, x_n, t+1, \]

\[\sum_{i=1}^{n} x_i - t + 1 \]

(Poly size in Subset problem size.)

\[\text{Need to show} \quad \{\exists S \text{ such that } \sum_{i \in S} x_i = t \} \quad \Rightarrow \text{yes} \]

\[\Rightarrow \quad \text{Suppose \textsc{SUBSET-SUM is a "yes" instance}} \]

\[\exists S \text{ such that } \sum_{i \in S} x_i = t \]

\[\text{For \textsc{Partition}}: \]

\[\{ S, \frac{1}{2} \sum_{i=1}^{n} x_i - t + 1 \} \]

\[\{ \frac{1}{2} \sum_{i=1}^{n} x_i - t + 1, \}

\[\sum_{i \in S} x_i + \sum_{i \in S} x_i - t + 1 \]

\[\frac{1}{2} \sum_{i \in S} x_i + t + 1 \]

\[\frac{1}{2} \sum_{i \in S} x_i + 1 \]
In PARTITION instance "created", if it yes instance, then \(t + 1 \), and \(\sum_{i=1}^{n} x_i - t + 1 \) CANNOT be on the same side since sum of these two \(\sum_{i=1}^{n} x_i + 2 \) and all the rest add up to only \(\sum_{i=1}^{n} x_i \). Hence these must be on opposite sides.

Let those with \(\sum_{i=1}^{n} x_i - t + 1 \) be called \(S \leq \{1, 2, \ldots, n\} \).

Hence two sides are

\[
\begin{align*}
S & \quad \overline{S} \\
\sum_{i=1}^{n} x_i - t + 1 & \quad t + 1 \\
\sum_{i \in S} x_i + \sum_{i \in \overline{S}} x_i - t + 1 & = \sum_{i \in S} x_i + t + 1 \\
\sum_{i \in S} x_i + \sum_{i \in \overline{S}} x_i - t & = \sum_{i \in S} x_i + t \\
2 \sum_{i \in S} x_i & = 2t \\
\therefore \text{subset sum is yes}
\end{align*}
\]
0/1 INTEGER-PROGRAM

Input: An integer matrix \(\mathbf{A} \), integer vector \(\mathbf{b} \).

Q: Is there a 0/1 vector \(\mathbf{x} \) such that

\[
\mathbf{A} \mathbf{x} \geq \mathbf{b} \quad \left(\sum_{j=1}^{m} a_{i,j} x_j \geq b_i, \ i=1, \ldots, m \right)
\]

1. 0/1 INT. PROG \(\in \text{NP} \)

 V. Certificate: \(\mathbf{x} \) itself (polynomial size)

 "yes" instance

 V. alg.: Check (\(\ast \ast \)) using binary arithmetic (Poly time)

2. 0/1 INT. PROG \(\in \text{NP} \- \text{C} \)

 \(\text{NP} \- \text{C} \subseteq \text{P} \)

 \(\text{3-SAT} \)

On next page
3-SAT

Aub. instance

\[\phi = C_1 \land C_2 \land \ldots \land C_k \]

\[C_j = (l_j^{0}, v_j^{1}, v_j^{2}, v_j^{3}) \]

\[l_j^m \in \{ x, \overline{x}, \ldots, x_n, \overline{x_n} \} \]

Q: Is there \(x \in \{0, 1\}^n \) such that \(\phi = 1 \) ?

For each clause \(C_j = (l_j^{0}, v_j^{1}, v_j^{2}, v_j^{3}) \)

Create an inequality in INT-PROG as follows:

\[l_j^{0} + l_j^{1} + l_j^{2} \geq 1 \]

Example

\[C_j = (x_1, v_2, v_3) \]

\[\downarrow \]

\[x_1 + (1-x_2) + (1-x_3) \geq 1 \]

Yes, \(\rightarrow \) yes is "clear".

This also works if \(x \) can be arbitrary integer vector in INT-PROG. But showing this \(\in \) in NP is more difficult.
Two More HAM* Reduction

A) \[\text{UNDIR-HAM-CYCLE} \leq_p \text{DIR-HAM-CYCLE} \]

\[\text{instance: Undir. } G = [V, E] \]

Q: Is there a \text{HAM-cycle} \(G \)?

\[\text{instance Dir. graph } H = [U, F] \]

Q: Is there a dir. \text{HAM-CYCLE in } H ?

\[U = V ; \]

Each edge in \(G \) \[\rightarrow \]

two edges in \(H \)

Exercise: Show \(\text{yes } \leftrightarrow \text{yes} \) (Exercise for you)

B) \[\text{DIR-HAM-CYCLE} \leq_p \text{UNDIR-HAM-CYCLE} \]

\[\text{instance } G = [V, E] \]

\[\text{dir} \]

\[? \]

\[\text{instance undir. } H = [U, F] \]

Next page
$|U| = 3|V|$

i.e. each vertex in G is replaced by 3 vertices in H.

$|F| = |E| + 2|V|$: Construction below.

\implies

$\text{HAM-CYCLE in } G$

\implies

$\text{HAM-CYCLE in } H$
HAMCycle in H

Since "second" copy of each node is "only" connected to its own first & third copies, these nodes must occur together in any HAM-cycle in H.

Moreover, if for some node they occur in the order \(A' \rightarrow A_2 \rightarrow A_3 \)

Then this same order must occur for all nodes. Hence we can use some two "picture" to show

\[\text{yes} \iff \text{yes} \]