Optimization on Matroids and Independence Systems

1. Given a finite set E with element weights $w(e), e \in E$, find $F \subseteq I$ with
 $\max \sum w(e)$
 $e \in F$
 or $\min \sum w(e)$
 $e \in F$

When does greedy algorithm work?

Gale optimality

Let elements of E be ordered: $e_1 \geq e_2 \geq \ldots$

Let $F = \{f_1, f_2, \ldots, f_k\}$, $G = \{g_1, g_2, \ldots, g_k\}$

When $F, G \subseteq I$, if $k \geq l$, and

$f_1 \geq g_1$, $f_2 \geq g_2$, \ldots, $f_l \geq g_l$

Then we say F is "better" than G.

Q: Is there an $F^\ast \in I$ such that F^\ast is better than G for all $G \in I$?

Such a F^\ast is called Gale optimal solution.

Greedy algorithm:

See next page.
Let E be a finite set, with edge weights $w(e) \in \mathbb{R}$. Let elements of E be arranged so that

$$w(e_1) \geq w(e_2) \geq \ldots \geq w(e_k) > 0 \geq w(e_{k+1}) \geq \ldots \geq w(e_n)$$

where $|E| = n$. We may be interested in one of two problems, assuming (E, F) is a matroid.

1. Find $\max_{F \in \mathcal{F}} \sum_{e \in F} w(e)$
2. Find $\max_{B \in \mathcal{B}} \sum_{e \in B} w(e)$

These are slightly different.

For (1) we ignore elements e_{k+1}, \ldots, e_n. We need not (and will not) select any of them.

For (2) we may be "forced" to include some of these elements in order to get a $B \in \mathcal{B}$.

We can convert (2) to (1) as follows:

Since $|B|$ is same for all $B \in \mathcal{B}$ (matroid axiom), we can change $w(e)$ to $w(e) = w(e) + K$ for $K > 0$ large without affecting the result. So we will look at (1) from now on.

Now opt. solution $\{e_1, e_2, \ldots, e_k\}$ is a basis.
Algorithm: [full] [Greedy algorithm]

Process these elements up to \(E_k \). Start with \(F_0 = \emptyset \).

At any stage \(j \), \(j \leq k \) we have \(F_j \in \mathcal{F} \) and are about to consider element \(e_{j+1} \).

- If \(F_j \cup \{ e_{j+1} \} \in \mathcal{F} \), let \(F_{j+1} = F_j \cup \{ e_{j+1} \} \).
- Otherwise, let \(F_{j+1} = F_j \) and proceed to process \(e_{j+2} \).

Theorem (Gale): Let \(M = (E, \mathcal{F}) \) be a matroid.

Let elements of \(E \) be ordered: \(e_1 \geq e_2 \geq \cdots \geq e_n \) (assume \(w(e) > 0 \) for \(e \in E \)).

\(F \) a Gale optimal member in \(\mathcal{F} \).

Pf: Apply greedy algorithm to determine a

the lexicographically maximum member of \(\mathcal{F} \). Claim \(F^* \) is Gale optimal.

Pf of claim: Let \(F^* = \{ f_1, f_2, \ldots, f_m \} \) \(f_i \in E \)

with \(f_1 \geq f_2 \geq \cdots \geq f_m \)

Let \(G \in \mathcal{F} \) be any member of \(\mathcal{F} \).

\[G = \{ g_1, g_2, \ldots, g_n \} \]

\[g_1 \geq g_2 \geq \cdots \geq g_n \]
Suppose $g_k > f_k$ \((\text{with } k \text{ min})\)

\[\Rightarrow g_1, g_2, \ldots, g_{k-1} > f_k \]

Consider $F^*_{k-1} = \{ f_1, \ldots, f_{k-1} \} \in \mathcal{F}$

$G_k = \{ g_1, \ldots, g_k \} \in \mathcal{F}$.

\[|G_k| > |F^*_k| \quad \exists \quad g_i \in G_k - F^*_k \quad \text{such that} \quad F^*_{k-1} \cup \{ g_i \} \in \mathcal{F} \]

$F^*_{k-1} \cup \{ g_i \}$ is lexicographically larger than F^*

- a contradiction.

Hence $g_i \leq f_i \quad i = 1 \ldots n$ \([\text{implying } m \geq n]\).

\[\Rightarrow F^* \quad \text{is a \textit{maximal} Gale opt. set member of } \mathcal{F} \]

\(\text{One that is also maximum in size}\)

And hence a basis of M.

Hence greedy alg. max $\sum_{e \in F} w(e)$ \((\text{assuming } F \in \mathcal{F})$

$w(e) \geq 0 \forall e \in \mathcal{E}$; \underline{else truncate} so $w(e) \leq 0$
Now the converse.

Theorem 2. If \(M = (E, G) \) is an inductive system such that greedy algorithm correctly computes \(\max_{F \in \mathcal{F}} \sum_{e \in F} w(e) \) for all \(w \), then \(M \) is a matroid.

Pf: Need to show that if \(F \in \mathcal{F} \), \(G \in \mathcal{F} \), and \(|G| > |F| \), \(\exists g \in G - F \) such that \(F \cup \{g\} \in \mathcal{F} \).

Let \(w(e) = \begin{cases} 1 & e \in F \\ 1 - \varepsilon & e \in G - F \\ 0 & e \notin G \cup F \end{cases} \)

The greedy algorithm first selects \(F \); but

\[\sum_{e \in G} w(e) > |F| \text{ if } |G - F| (1 - \varepsilon) > |F - G| \]

\[\therefore (1 - \varepsilon) > \frac{|F - G|}{|G - F|} \]

We can choose such an \(\varepsilon \) since \(\frac{|F - G|}{|G - F|} < 1 \)

\(\therefore \text{Alg. must continue to select more elements from } G - F \text{ after selecting } F \text{ and we are done.} \)
Edmonds' Proof Via LP Duality

1. Matroid Optimization

Ref. Matroids and the Greedy Algorithm
Jack Edmonds, Mathematical Programming,

Consider: \(x_j \geq 0 \) \(j \in E = \{1, 2, \ldots, n\} \)

\(\sum_{j \in E} x_j \leq r(s) \) \(\forall s \subseteq E. \)

\[\text{Max} \sum_{j=1}^{n} w_j x_j \]

Since \(r(s) \in \{0, 1\}, 0 \leq x_j \leq 1 \) \(\forall j = 1 \ldots n \)

Integer solutions to \(P \) (necessarily 0/1 solution) is an indicator function of \(F \in \mathcal{F} \).

\[y(s) \geq 0 \] \(\forall s \subseteq E \)

\[\sum_{s \subseteq E} y(s) \geq w_j \] \(j = 1 \ldots n \)

\[\text{Min} \sum_{s \subseteq E} r(s) y(s) \]

is the LP dual of \(P \).
Now let elements of E be ordered so that

$$w_1 \geq w_2 \geq \ldots \geq w_m \geq 0 \geq w_{m+1} \geq \ldots \geq w_n.$$

Let $E' = \{1, 2, \ldots, m\} \subset E$.

Let $A_k = \{1, 2, \ldots, k\}$

Let $x^0 = (x_1^0, x_2^0, \ldots)$

where $x_i^0 = \gamma(A)\gamma(A)$, $x_j^0 = \gamma(A_j) - \gamma(A_{j-1})$, $j = 2, \ldots, m$

and $x_j^0 = 0$, $j > m$.

(This is the solution produced by the greedy algorithm)

It is easy to verify that x^0 is the indicator vector of a set F which is a M-basis of E'.

Let $\{y^0(s)\}$ be defined as follows:

$$y^0(A) = \begin{cases} w_j & \text{if } j = j_1, \ldots, m-1 \\ w_m & \text{if } y^0(A_m) = \gamma(A_m) = w_m \\ 0 & \text{for all other } A \leq E. \end{cases}$$

Consider any element $j \in E$, $j \geq m$.

then $\sum_{j \in S} y^0(s) = 0 > w_j$
\[\begin{align*}
\sum_{j \in A} y^0(j) &= \sum_{k=1}^{m} y^0(A_k) = \\
&= (\sum_{k=j}^{m} (W_k - w_{k+1})) + w_m \\
&= w_j \geq 0.
\end{align*} \]

Hence \(y^0 \) is feasible to the dual.

Check to see \((x^0, y^0)\) satisfy Complementary Slackness and hence optimal to \(P \) and \(\delta \) respectively.

[See page 279 of \textit{Cook, Cunningham, Pau and S}]