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0.1 Ellipsoid Algorithm I:

Here we describe an algorithm for LP shown to work in polynomial time
for the first time. We will begin first with the problem considered by L.G.
Khachiyan as reported by Lovasz and Gacs.

Algorithm I:

Input:
I : [aix < bi; 1 ≤ i ≤ m]

ai ∈ Zn; bi ∈ Z;1 ≤ i ≤ m.

Output: A solution x ∈ Qn to I if one exists or an indication no such
solution exists.

Definition 1 L =
∑
ij log(|aij|+ 1) +

∑
i log(|bi|+ 1) + log(nm) + 1.

This is the space required to state the problem in binary encoding of all
data.

Step 0: Set x0 = 0; A0 = 2LI; k = 0; go to step 1.
Step 1: If xk solves I, stop; if k > 2(n+ 1)(2nL+ n+ L), stop with the

statement “I is infeasible”. If not, let aixk ≥ bi be a violated constraint in
I. Define:

xk+1 = xk − 1
n+1

Akai√
(aiAkai

Ak+1 = ( n2

n2−1)
(
Ak − 2

n+1
(Akai)(Akai)t

aiAkai

)

and go to step 1.
Main Results:

Theorem 1 The above algorithm “works”.

Lemma 2 Every vertex of the polyhedron {x : aix ≤ bi; 1 ≤ i ≤ m;x ≥ 0}
has coordinates that are rational numbers with numerator and denominator
at most 2L

nm
; also ‖v‖ < 2L

m
for all vertices of this polyhedron.

Lemma 3 If I has solutions, then the volume of solutions inside the sphere
{x : ‖x‖ < 2L} is at least 2−(n+1)L.

Lemma 4 The system aix < bi + 2
−L; 1 ≤ i ≤ m has a solution iff the

system aix ≤ bi; 1 ≤ i ≤ m has a solution; moreover, a solution of one can
be found from that of the other in polynomial time.
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Given a positive definite matrix A0 and a point x0, let the ellipsoid E be
given by E = {y : (y − x0)t(A0)−1(y − x0) ≤ 1}. Let a 
= 0 ∈ Rn. The sets
1

2
Ea = E ∩ {x : (x− x0)ta ≤ 0} and Ea = {y : (y − x1)t(A1)−1(y − x1) ≤ 1}
satisfy:

Lemma 5 1
2
Ea ⊂ Ea.

Lemma 6 Let λ(E) denote the volume of ellipsoid E. Then, λ(Ea) =
c(n)λ(E) where

c(n) = (
n2

n2 − 1)
n−1
2 (

n

n+ 1
) < e−

1
2(n+1)

These lemmas are used to prove the theorem. We will show each of these
in detail first and then use this to show how LP is solved.

0.1.1 Proofs:

Lemma 1: Let v = (v1, v2, ..., vn) be a vertex of {x : x ≥ 0; aix ≤ bi; 1 ≤ i ≤
m}. By Cramer’s rule, each vi can be expressed as a ratio of determinants
Di and D whose entries are 0, 1, aij , or bi.

Claim 1 |D| < 2L

nm
, and the same holds for Di. This would imply the lemma.

Proof: D is the sum of m! terms each of which is a product of entries of D.
Hence:

|D| ≤ ∑
m! terms |each term|

≤ ∏
i

∑
j |dij| ≤

∏
i

∏
j(|dij|+ 1) < 2L

nm

Lemma 2:

Claim 2 : We may assume that I has a solution x0 > 0.

Proof: Let x0 be a solution; if some components are negative, multiply those
elements of the matrix by −1, and to the new system, we get a new solution
with these components positive. Note that this does not change the volume
or L. Thus, we may assume that x0 ≥ 0. But I is a strict inequality system;
hence, we may assume that x0 > 0 as claimed.
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Thus, the polyhedron {x : x ≥ 0; aix ≤ bi; 1 ≤ i ≤ m} has an interior
point (a point that satisfies all inequalities as strict inequalities). Since the

polyhedron has no line, it has an extreme point, say v. By lemma 1, vi <
2L

nm
.

Hence, the polyhedron above has an interior point x with x < 2L

nm
e and,

hence, the polytope {x : x ≥ 0; aix ≤ bi; x ≤ 2L

nm
e} has an interior point.

Hence, this last system has n + 1 vertices not all in the same plane. This
set has a volume equal at least that of the simplex {v0, v1, ..., vn} given by
1
n!
det

[
1 1 · · · 1
v0 v1 · · · vn

]

. By lemma 1, vi = ui

Di
where ui is an integral vector

andDi is integer number <
2L

nm
. Hence, the volume λ(S) of the simplex above

satisfies:

λ(S) ≥ 1
n!

1∏
n

i=0
|Di|

∣∣∣∣∣det

[
D0 D1 · · · Dn

u0 u1 · · · un

]∣∣∣∣∣

≥ 1
n!

nn+1

2(n+1)L
≥ 2−(n+1)L

Thus, we have shown that the volume of solutions inside the cube {x : |xj| <
2L

nm
} is at least 2−(n+1)L. This cube is entirely contained in the sphere for

n > 2.
Ellipsoids:

Definition 2 An ellipsoid is the image under a linear transformation of a
sphere. Every linear transformation can be broken down into three fundamen-
tal ones: (i)translation; (ii)rotation; and (iii)dilation of axes. Translation is
of the form: x �→ x+ a for a fixed a. Rotation is of the form: x �→ Rx where
R is an orthonormal matrix. (A matrix R is orthonormal if RtR = I).
The name arises from the fact the columns (and rows) of such a matrix are
orthogonal to each other and the length of each is 1. Orthonormal transfor-
mations preserve distance, i.e., d(x, y) = d(Rx,Ry) ∀ x, y. Dilation is of the
form: x �→ Ωx where Ω is a diagonal matrix with nonnegative entries on the
diagonal (usually positive). This is equivalent to scaling of variables. Thus,
translation changes only the center of the sphere; rotation does not change
the center, but spins the sphere to produce a new sphere which is the same
as the old one. It is dilation that changes the shape of a sphere to that of
an ellipsoid. If Ω has a zero on the diagonal, it is singular; then it collapses
the sphere to a lower dimensional ellipsoid. Hence, if the ellipsoid is to have
volume, then Ω must be nonsingular. We now state these facts algebraically.
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Definition 3 Given a nonsingular matrix Q and a point x0, the set

E = {y : y = Qz + x0; ‖z‖ ≤ 1}
is an ellipsoid whose center is x0.

Definition 4 A matrix A is positive definite (positive semi-definite) if

xtAx > 0 ∀ x 
= 0 (≥ 0 ∀ x)

Lemma 7 Given an ellipsoid E = (Q, x0), ∃ a symmetric positive definite
matrix ∋ E = {y : (y − x0)tA−1(y − x0) ≤ 1}.
Proof: Take A = QQt.

Lemma 8 Given a positive definite symmetric matrix A and a point x0, the
set E = {y : (y − x0)tA−1(y − x0) ≤ 1} is an ellipsoid with center x0.

Proof: A matrix of the above type can be factored and written as A = QQt

for some nonsingular Q. This process is sometimes called “completion of
squares” and is most often done on the quadratic form xtA1x as described
below:

xtA1x =
∑
i

∑
j a

1
ijxixj = (v

1)tA2v1 where v1 = E1x with E1
1. = [A

1
1./a

1
11]

and E1 is an elementary matrix with the first row different from that of I.
A2 = ((E1)−1)tA1(E1)−1 with A21. = a11e1 = (A

2
.1)
t. If A1 is positive definite

then so is A2. Repeating the process we can write xtA1x = vt(S−1)tA1S−1v
where v = Sx and S = En.....E1. (S−1)tA1S−1 is a diagonal matrix D
with positive diagonal elements.

√
D has the obvious connotation and A1 =

StDS = St
√
D.
√
D.S = QQt where Q = St

√
D. Note that this also shows

that if during this process we get a negative element on the diagonal that the
original matrix is not positive definite and there is a vector to show that it is
not. In this case D has negative elements on the diagonal and hence v can be
taken to be a unit vector to show that A1 is not positive definite. Of course
the square root operation need not be done exactly.

Lemma 9 Given an ellipsoid E = (Q, x0), a nonsingular matrix P and a
point p0, the map x �→ Px+ p0, the image of E is an ellipsoid.

Proof: The image of E is E′ = (PQ, Px0 + p0). Thus, the set of ellipsoids
is a family of geometric objects closed under linear transformations. There
are, of course, other families of geometric objects having this property, and
they can be (and have been) used for such algorithms.
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0.1.2 Volumes:

Here we establish the volumes of simple bodies and how volume of a body
changes under linear transformations. Geometrically, translations and rota-
tions do not affect the volume. Dilations do by a factor equivalent to the
determinant of the matrix. We will show that any linear transformation can
be decomposed into a series of simple transformations.

Lemma 10 Let Q be a nonsingular matrix. Then Q is a product of matrices
of the form:




1
1

...
...

. . .
...

...
...

...
x · · · · · · 1 · · · · · · x
...

...
...

...
. . .

...
...

1
1






and






1
1

...
...

. . .
...

...
...

...
· · · αi · · ·

...
...

...
...

. . .
...

...
1
1






where αi 
= 0 and x can be any number; blank spaces are zeroes. Then,
det Q = product of the α′s.

Proof: By “product form,” we know that Q is a product of “elementary”
matrices of the form:




1
1

...
...
. . .

...
...

...
...

β · · · · · · α · · · · · · γ
...

...
...

...
. . .

...
...

1
1






where α 
= 0; but this is the product of:




1
1

...
...
. . .

...
...

...
...

β · · · · · · 1 · · · · · · γ
...

...
...

...
. . .

...
...

1
1






and






1
1

...
...
. . .

...
...

...
...

α
...
...

...
...
. . .

...
...

1
1
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and hence the result.

Lemma 11 Consider the map: x �→ (x1 +
∑n

i=2
α
i
x
i
, x2 , ..., xn). (This cor-

responds to the first of the above two types of matrices.) Let C be the unit
cube {x : 0 ≤ xi ≤ 1} and let K(C) be its image under this transformation.
Then, vol(K(C)) = 1.

Proof: vol(K(C) =
∫ 1
0 dyn...

∫ 1
0 dy2

∫ 1+
∑

n

i=2
αiyi∑

n

i=2
αiyi

dy1 = 1

Lemma 12 Consider the map: x �→ (x1, x2, ..., αxi, ..., xn). (We will as-
sume that α 
= 0.) Let S(C) be the image of the cube C defined as before.
vol(S(C)) = |α|.

Proof: S(c) = {y : 0 ≤ yj ≤ 1 ∀ j 
= i; 0 ≤ |yi
α
| ≤ 1}. The lemma

follows by integration. Please note that this is the second type transformation
mentioned above.

Lemma 13 Let Q be a nonsingular matrix and x0 be a point, and S be a
set and I(S) be its image under the transformation: x �→ Qx + x0. Then,
vol(I(S)) = |detQ|vol(S).

Proof: Follows from the previous lemmas.

0.1.3 Orthonormal Matrices & Gram – Schmidt Pro-

cess:

Lemma 14 RtR = I =⇒ ‖y − x‖ = ‖Ry − Rx‖ ∀ x and y (Please note
that the converse is also true). In particular ‖Rz‖ ≤ 1 ⇐⇒ ‖z‖ ≤ 1 if R is
orthonormal.

Lemma 15 Given a vector a 
= 0, ∃ orthonormal R ∋ Ra = ‖a‖e1.

Proof: Given any set of linearly independent vectors [a1, a2, ..., an] in Rn,
we construct an orthonormal matrix R with Ra1 = ‖a1‖e1 by the Gram –
Schmidt “orthogonalization” process described below:
Let u1 = a1

‖a1‖ ; v
k = ak − ∑k−1

i=1 ((u
i)tak)ui; and uk = vk

‖vk‖ for k ≥ 2.

Let Rt = [u1, u2, ..., un]. This is the required R. In the lemma, we have
a1 = a 
= 0; so we can choose the remaining a’s to be unit vectors and,
hence, the lemma.
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Theorem 16 Given x0 ∈ Rn, a nonsingular matrix Q, and a vector 0 
= b ∈
Rn, ∃ an orthonormal matrix R ∋ for the map: x �→ f(x) = RQ−1(y − x0) :

1. f(x0) = 0

2. RQtb = αe1 for some α > 0

3. f(E) = {z : ‖z‖ ≤ 1}, where E = (Q, x0) is the ellipsoid of Q and
x0

4. f(H) = {y : yte1 ≤ 0} where H = {y : (y − x0)tb ≤ 0}.

Proof: Let a = Qtb in the previous lemma; we get an orthonormal R satis-
fying (ii) where α = ‖a‖ 
= 0 since b 
= 0 and Q is nonsingular. (i) is satisfied
for all R.
(iii) E(Q, x0) = {y : y = Qz + x0; ‖z‖ ≤ 1}
f(E) = {y : y = RQ−1((Qz + x0)− x0); ‖z‖ ≤ 1}
= {y : y = Rz; ‖z‖ ≤ 1}
= {y : ‖y‖ ≤ 1}
(iv) Note that f−1(y) = QRty + x0. Hence,
f(H) = {y : y = RQ−1(z − x0); (z − x0)tb ≤ o}
= {y : ((QRty + x0)− x0)tb ≤ 0}
= {y : ytRQtb ≤ 0}
= {y : yte1 ≤ 0}.
Thus, this transformation changes the ellipsoid to a sphere with unit ra-

dius and origin as the center and the “cutting plane” to the plane ⊥ the first
axis. See the diagram below:

Lemma 17 Let E = {y : (y− x0)tA−1(y− x0) be an ellipsoid (A = QQt for
some nonsingular Q) and a 
= 0. Let A1, x1 be defined as in the algorithm:

x1 = x0 − 1

n+ 1

Aa√
atAa

and

A1 =
n2

n2 − 1[A−
2

n+ 1

(Aa)(Aa)t

atAa

Then, E1 = {y : (y − x1)t(A1)−1(y − x1) ≤ 1} is an ellipsoid and 1
2
E =

E ∩ {y : (y − x)ta ≤ 0} ⊂ E1.
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Please note that the set of feasible solutions within the sphere mentioned
before is contained in the above intersection and hence in the next ellipsoid.
Thus, it is contained in all the ellipsoids of the algorithm. We will show in
the next lemma that the last of these has a very small volume (insufficient if
the number of steps exceeds the prescribed value) and this will then prove the
theorem.
Proof: It can be shown that by simple calculation that

(A1)−1 =
n2 − 1
n2

[A−1 +
2

n− 1
aat

atAa
]

which is clearly symmetric and positive definite and hence it follows that A1

is also positive definite. Now consider the map x �→ f(x) = RQ−1(x − x0).
We will show the following:

1. f(E) is the sphere with origin as the center and unit radius

2. f(1
2
E) is the half sphere containing the “left” half of the first axis

3. f(1
2
E) ⊆ f(E1) and, hence, 1

2
E ⊆ E1

4. f(E1) is an ellipsoid and, hence, E1 is also an ellipsoid (this has already
been shown above).

(i) and (ii) have already been shown. To show (iii) and (iv), we first study
what the outcome of the algorithm is if we start with f(E) instead of E. We
will show that the output is f(E1). For this purpose, let A = I and x0 = 0,
and a = e1.

A2 = n2

n2−1

[
I − 2

n+1
e1e

t
1

]

=






α
α

α
α





−






αβ




=






γ
α

α
α






where α = n2

n2−1 ;β =
2
n+1
, and γ = α − αβ = n2

(n+1)2
, and x2 = − e1

n+1
.

Since A2 is a diagonal matrix with positive entries on the diagonal, it is
clearly positive definite. Hence, E2(x2, A2) is an ellipsoid. Also, to show
that this contains the “left” half of the sphere, we have to show that [z :
‖z‖ ≤ 1; zte1 = z1 ≤ 0] =⇒ [z : (z − x2)t(A2)−1(z − x2) ≤ 1]. Note that
‖z‖ ≤ 1 =⇒ |z1| ≤ 1 and, hence, −z1 ≤ 1.

8



(z − x2)t(A2)−1(z − x2) = zt(A2)−1z − 2zt(A2)−1x2 + (x2)t(A2)−1x2
= 1

n2
[(n2 − 1)‖z‖2 + 2(n+ 1)(z21 + z1) + 1]

= n2−1
n2
(‖z‖2 − 1) + (2n+1

n2
z1(z1 + 1) + 1

≤ 1.
We will now show that the ellipsoid E2 = f(E1); this will prove that E1

is an ellipsoid and the rest of the lemma.
E2 = {y : (y − x2)t(A2)−1(y − x2) ≤ 1}
RQ−1(x1 − x0) = RQ−1[x0 − 1

n+1
QQta√
atQQta

− x0]

= − 1
n+1

RQta

‖Qta‖
= − 1

n+1
e1 = x2

E1 = {y : (y − x1)t(A1)−1(y − x1) ≤ 1}
f(E1) = {z : (QRtz + x0 − x1)t(A1)−1(QRtz + x0 − x1) ≤ 1}
= {z : (z −RQ−1(x1 − x0))tRQt(A1)−1QRt(z − RQ−1(x1 − x0)) ≤ 1}
= {z : (z − x2)tRQt(A1)−1QRt(z − x2) ≤ 1}
To show that f(E1) = E2, we have to show that (A2)−1 = RQt(A1)−1QRt

or, equivalently, that A2 = RQ−1A1(RQ−1)t which we do now.
RQ−1A1(RQ−1)t

= n2

n2−1 [RQ−1A(RQ−1)t − 2
n+1

(RQ−1)(Aa)t(RQ−1)t

atAa
]

Letting A = QQt, we get the desired result. This completes this lemma.

Lemma 18 Given E and E1 as in the previous lemma, λ(E1) = c(n)λ(E)

where c(n) = n
n+1

(
n2

n2−1

)n−1
2 < e−

1
2(n+1) .

Proof: Since f is an affine transformation, λ(E
1)

λ(E)
= λ(f(E1))

λ(f(E))
= λ(f(E2))

λ(S)
where

S is the unit sphere centered at the origin. But E2 is an ellipsoid with Q2

a diagonal matrix, all of whose diagonal entries are n√
n2−1 except the first

which is n
n+1
. Hence,

λ(E1)
λ(E)

= | det Q2| =
(

n2

n2−1

)n−1
2 [ n

n+1
]

“Clearly” ex > 1 + x for x > 0; hence,
n2

n2−1 = 1 +
1

n2−1 < e
1

n2−1

Consider g(x) = e−x − 1 + x; g(0) = 0; g′(x) = 1 − e−x > 0 ∀ x > 0;
hence, g(x) > 0 ∀ x > 0; hence, e−x > 1− x ∀ x > 0. Hence,

n
n+1

= 1− 1
n+1

< e
1

n+1 . Hence c(n) < e
n−1

2(n2−1)
− 1
n+1 = e−

1
2(n+1) .
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Theorem 19 If the algorithm runs for more than 2(n + 1)(2nL + n + L)
iterations, then I has no feasible solutions.

Proof:

λ(Ek) < e−
k

2(n+1)λ(S) < e−
k

2(n+1)2n(L+1) < 2n(L+1)−
k

2(n+1)

But λ(Ek) > 2−
1

(n+1)L , and hence,

n(L+ 1)− k

2(n+ 1)
≥ −(n+ 1)L

Hence, k ≤ 2(n+ 1)(2nL+ n + L). Thus, if k exceeds this ∃ no solution to
system I as promised.

0.1.4 Application to LP:

Lemma 20 The system

II : aix < bi + 2
−L; 1 ≤ i ≤ m

has a solution iff the system

III : aix ≤ bi; 1 ≤ i ≤ m

has a solution; moreover, a solution of one can be found from that of the
other is polynomial time. Please note that the space required for encoding II
is polynomially related to that of III.

Proof: “Clearly” a solution to III is a solution to II. To go the other way,
consider the LP:

min t
aix− si ≤ bi

si ≤ t; si ≥ 0; 1 ≤ i ≤ m

If x is a solution to II, then (x, s, t) is a solution to the LP with t < 2−L,
where si = max(0, a

ix − bi) and t = maxi si. Hence, ∃ an extreme solution
to the LP which is optimal and has value < 2−L in this case. But all the
coordinates of all vertices of the LP are rational numbers with numerator and
denominator < 2−L. Hence, t∗ = 0 and starting from the feasible solution to
II which is feasible to the LP and has value < 2−L, we can find in polynomial
time the optimal solution of the LP which has t∗ = 0 and, hence, is feasible
to III.
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Lemma 21 Every LP can be written in the form of inequalities III.

This concludes Ellipsoid I discussion. In Ellipsoid II we will not use L;
instead the actual values that occur in the polytope will be used. Also we
will discuss various applications of this to show polynomiality. Please note
that the algorithm uses the “square root” operation — this is not “legitimate”
in the usual sense. However, this objection can be overcome by calculating
the square root approximately and then expanding the containing ellipsoid a
little. The details are found in Ellipsoid II.
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