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Chapter 1

Linear Inequalities and
Theorems of the
Alternative

Reference: O.L. Mangasarian: Nonlinear programming

1.1 Existence Results:
Theorem 1 Let A be a m X n matrixz. The system:

Az >0
Aly =0y >0
Al,,x+y1 >0

has a solution. (Note: x is not required to be nonnegative in this).

Proof:By induction on m.

1. o . o ]. Al,. = 0
For m = 1;let x = Ay ; and y; = 0 A £0° Now assume that the
result is true for m < k; and show it holds for m = k + 1. For this purpose let
A= A A . By induction hypothesis, we have z, ¢ satisfying:
k+1,.
Az >0
Al =0;9>0
Aly 491 >0



If Aptq,.2 > 0, then take x = &;y = (9,0). If Apyq1, & < 0, then we apply
induction hypothesis to the k x n matrix B:

B, A+ M Agta
B = = ’
By, A, + MApya,.
where \; = *Af:iii >0
Bw >0
Bty =0;v>0
BL_’LU —+ U1 > O

Let z = w — %@. then Ax = Bw > 0; Agpr,x = 0. Let y =

(v, Z§:1 \jvj); Aly = Blo =0;y > 0. Ay, x+y1 = By, w+v; > 0.0
Corollary 2 Let A be as before. Then the system:
Ax >0
Aly =09 >0
Ar+y >0

has a solution.

Corollary 3 Let A be a my X n matriz and B a mg X n matriz. Then:

Ax > 0;Bx =0
Atyl + BtyQ — O;y1 2 0
Az +yt >0
has a solution.
A
Proof:Apply the first corollary to B
—-B

Corollary 4 A m; x n; Bmg X n;C mg x n; D my X n. Then the system:
Ax > 0;Bx > 0;Cx > 0;Dx =0
Aty1+Bty2+Cty3+Dty4:0;yi20;1Sigg
Ar+yl > 0;Bx+y? > 0;Cx +y> >0

has a solution.



Theorem 5 (Slater):Either
Ax > 0;Bx > 0;Bx #0;Cx > 0; Dz =0
has a solution or
Atyl + Btyz + Oty3 + Dty4 — 0
[y' > 0;y' # 0;9% > 0,9 > 0] or
[y' > 0;9% > 0;5° > 0]
has a solution.
Theorem 6 (Motzkin):Either
Ax > 0;Cx > 0;Dx =0
has a solution or
Atyl + Cty3 + Dty4 — 0
[y' > 0;y" #0;4° > 0] or
[yt > 0;9° > 0]
has a solution.
Theorem 7 (Tucker):Either
Bx >0;Bx #0;Cx > 0;Dx =0
has a solution or
BtyQ + C’ty3 + Dty4 =0
y? > 0;9% > 0]
Theorem 8 FEither

[Az > 0; Az #0; Bx > 0;;Cx > 0; Dx = 0] or
Az > 0;Bx > 0;Cz > 0; Dx =0

has a solution or
Atyl + Btyz + Oty3 + Dty4 — 0
[yt > 0;9% > 032 # 0;° > (]
has a solution.

Theorem 9 (Gordon)Either
Az >0

has a solution or
Aly =0;y > 0;y #0

has a solution.



Theorem 10 (Farkas)Either
Ax < 0;bx >0

has a solution or
Aly=by>0

has a solution.

Theorem 11 (Stiemke): Either

Bz >0;Bx #0
has a solution or
Bly=0;y >0
has a solution.
Theorem 12 (Gale): FEither
Ax =c
has a solution or
Aly =0;cy =1
has a solution.
Theorem 13 (Gale): Either
Ax <c

has a solution or

has a solution.



Chapter 2

Fourier Elimination

Jean Baptiste Joseph Fourier is considered by many to be the originator of
linear programming. He gave two methods to solve linear programs: a geometric
one that we now call the simplex method and an algebraic one that is called the
Fourier elimination method. It is the second that we take up now. It has very
powerful uses in proving theorems and is practically efficient in a very limited
number of cases. Its average complexity is not known. To illustrate the method
let us take a simple example:

max 2z + T
1+ 229 <6
T, +x,>2

x, —x, >3
z, >0z, >0

Rewriting this as a minimization problem and using z to indicate the function
to be minimized we get the system of inequalities:

—2r1 — 19 < z
r1 + 229 <6
T, +x, >2

x, —z, >3
z, >0z, >0

This is the same as the system:

—(2/2) — (22)/2 < 21

2—my <1

3+ < @1
0 S X

Iy S 6 — 25!32 (22)



29 >0 (2.3)

We choose x; as the first variable to eliminate (any one except z will do).
The set of inequalities in 2.1 give a lower bound on the variable x; those in
2.2 yield an upper bound and those in 2.3 do not involve this variable. We get
a new inequality for each combination of an inequality in 2.1 with one in 2.2.
Doing this we get the system:

—(2/2) — (x2/2) <6 — 2z
2_$2§6_2$2
3+$2§6—2J)2

OS6*2CE2
CEQZO

Rearranging this we get:
w2 <4+ (2/3)
X9 S 4
T9 S 1
i) S 3
0 S X9

Now we eliminate x2 and get the system (We could remove the redundant in-
equalities before doing this and it will save us a lot of work later):

0<4+(2/3)
0<4
0<1
0<3

The last three of these are vacuous and can be thrown away. The first is the
same as: z > —12. Hence the optimum value of z is —12 (since we want to
minimize z). This requires x5 to be equal to zero. This in turn means that
must equal 6. Hence we have the optimal solution as well. This is the method.

The main drawback in the method is that to eliminate a wvariable from a
system with m constraints and n variables the new system may have O(m?)
constraints in one less variable. This tends to “blow” the system up in size. The
one case where this does not happen is what is known as the 2-SAT problem in
logic. Here at each stage the only constraints are of the form:

Ty —Tj>Q
x;—x; >
T+ x5 2>
75%75!&'26

Thus, their number is at most 4(n?). Note: If every constraint has at most
two variables, then this condition is maintained throughout the process. On the



other hand, it may be possible to use this process in the reverse to reduce the
size of the problem — we know of very little work in this direction.

The advantage of this method is that it can be used to prove theorems. We
give below some examples:
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