This is page
Printer: Opaque this

R. Chandrasekaran UT Dallas

April 10, 1997

0.0.1 **Proofs**

- 1. $x, y \in S \cap T \Longrightarrow x, y \in S$, and hence $\lambda x + (1 \lambda)y \in S$; similarly $\lambda x + (1 \lambda)y \in T$ and hence it is in $S \cap T$. Hence the result. The assertion about $\cap_{\alpha \in A} S_{\alpha}$ follows in a similar manner.
- 2. "Clearly" the assertion is true by definition for n=2. Assume that it is true for $n \leq k$. Let $x =_i^k \sum_{=1}^{+1} \lambda_i x^i = \lambda_1 x_1 + (1-\lambda_1)_i^k \sum_{=2}^{+1} \mu_i x_i = \lambda_1 x_1 + (1-\lambda_1)z$ where $\mu_i = \lambda_i/(1-\lambda_1) \geq 0$, and $\sum_{k=2}^{k+1} \mu_i = 1$. (Please note that we have assumed that $\lambda_1 > 0$; but this is without loss since not all λ_i can be θ). Since z is a convex combination of k members of S, $z \in S$; hence $x \in S$. Please note that this proof will not generalize to the infinite case which needs a different kind of proof.
- 3. To show that H is a convex set: Let $x, y \in H$. Hence $cx = \alpha$, and $cy = \alpha$. Thus, $\lambda cx + (1-\lambda)cy = c(\lambda x + (1-\lambda)y) = \alpha$. Hence H is convex. H^+ , H^{++} , H^- , and H^{--} are shown to be convex in a similar manner. Indeed, this is the most primitive way of showing a set to be convex.
- 4. To show that D is convex: Let $x, y \in D$. Hence $\sum (x_i a_i)^2 \le \alpha^2$; and $\sum (y_i a_i)^2 \le \alpha^2$. Need to show that $\sum [\lambda(x_i + (1 \lambda)y_i) a_i]^2 \le \alpha^2$. $\sum [\lambda(x_i + (1 \lambda)y_i) a_i]^2 = \sum [\lambda(x_i a_i) + (1 \lambda)(y_i a_i)]^2$. $= \lambda^2 \sum (x_i a_i)^2 + (1 \lambda)^2 \sum (y_i a_i)^2 + 2\lambda(1 \lambda) \sum (x_i a_i)(y_i a_i)$. $= \lambda \sum (x_i a_i)^2 + (1 \lambda) \sum (y_i a_i)^2 \lambda(1 \lambda) \sum [(x_i a_i) (y_i a_i)]^2 < \alpha^2$.
- 5. The set of feasible solutions is closed because the limit points of a sequence of points in the set is in the set. The rest is easy.

0.0.2 Theorems

T1 Consider the problem $\min_{y \in \hat{S}} d(x, y)$; note d(x.y) = ||x - y||. Since distance is a continuous nonnegative function and \hat{S} is closed, the minimum is achieved at a point $y^* \in \hat{S}$, and $y^* \neq x$. Consider the halfspace $H^+ = \{y : 2(y^* - x)^t y \geq (y^* - x)^t (y^* + x)\}$. It is easy to show that $y^* \in H^+$ and $x \notin H^+$. For $y \in \hat{S}$, $\lambda y + (1 - \lambda)y^* \in \hat{S}$ since S is convex. By the definition of y^* , we have:

$$\|[\lambda y + (1 - \lambda)y^*] - x\|^2 = \|y^* + \lambda(y - y^*) - x\|^2 \ge \|y^* - x\|^2$$

This on simplification yields:

$$2\lambda(y-y^*)^t(y^*-x) + \lambda^2(y-y^*)^t(y-y^*) > 0 \ M \ \forall \ \lambda \in [0,1]$$

Hence:

$$(y-y^*)^t(y^*-x) \ge 0 > (x-y^*)^t(y^*-x)/2$$

and therefore,

$$2(y-y^*)^t(y^*-x)+(y^*-x)^t(y^*-x)>0$$
, and hence

$$(2y - y^* - x)^t(y^* - x) > 0$$
, and hence

 $2y^t(y^*-x)>(y^*+x)^t(y^*-x)$ which is the required result. Hence $\hat{S}\subset H^{++},$ and $x\in H^{--}.$

Theorem 1 Since x is a boundary point of S, \exists a sequence of points $x_{\nu} \notin \hat{S} \ni \lim x_{\nu} = x$. (Choose each of these to be in smaller and smaller spheres centered at x and from outside \hat{S}). For x_{ν} , $\exists a_{\nu} \ni ||a_{\nu}|| = 1$, and $a_{\nu}^{t}y > a_{\nu}^{t}x_{\nu} \forall y \in \hat{S}$. Let a be a limit point of the sequence $\{a_{\nu}\}$. (Such points exist since all of these are in a compact set). Then $a^{t}y \ge a^{t}x \forall y \in \hat{S}$ with equality holding for x. This is the required supporting plane.

Theorem 2 If S is a closed convex set and T is the intersection of all its supporting halfspaces, then "clearly" $S \subseteq T$. If $x \in T - S$, then by theorem 1, $\exists H \ni S \subset H^{++}$ and $x \notin H^{++}$, and this is a contradiction to the definition of T.

Theorem 3 4.

0.0.3 Functions

2 Let $f(x) = \sup_{\nu} f_{\nu}(x)$. Since $f_{\nu}(\lambda x + (1 - \lambda)y) \leq \lambda f_{\nu}(x) + (1 - \lambda)f_{\nu}(y)\forall \nu$, the result follows.

3 Let $N(x^0)$ be the neighborhood of x^0 . If $f(x^0) > f(x^1)$, then $\exists z = \lambda x^0 + (1 - \lambda)x^1$ and $z \in N(x^0)$ with $f(z) < f(x^0)$.

0.1 LP Related Results

2 Let x be a basic feasible solution corresponding to the basis B (think of a basis as a set of linearly independent columns of A). By this we mean that $x^{NB} = 0$, and $Bx^B = b$ has a unique solution. If $x = \lambda y + (1 - \lambda)z$, then $y^{NB} = z^{NB} = 0$; hence $y^B = z^B = x^B$. Hence x = y = z. Hence x is an extreme point.

Conversely, suppose x is an extreme point, and let B be the columns corresponding to positive components of x. Suppose these are dependent; $\exists z^B \neq 0 \ni Bz^B = 0$. By letting other components equal to 0 we get $z \neq 0 \ni Az = 0$. Consider the vector $x + \theta z$. Since $x^{NB} = z^{NB} = 0$; $(x + \theta z)^{NB} = 0 \forall \theta$; also since Az = 0; $A(x + \theta z) = b \forall \theta$. Since $x^B > 0$, $\exists \theta > 0 \ni (x \pm \theta z)^B \ge 0$. This is a contradiction of extremeness of x. Hence the columns of B are independent and hence x is a basic feasible solution.