
0.1 Example of Simplex Method (Two Phases):

Consider the following example: min z : x ≥ 0 and

2x1 + x2 + 2x3 + x4 + 4x5 = z

4x1 + 2x2 + 13x3 + 3x4 + x5 = 17

x1 + x2 + 5x3 + x4 + x5 = 7

After introducing artificial variables and getting initial canonical form for Phase
I the table looks like:

x1 x2 x3 x4 x5 v1 v2 −z −w

4 2 13 3 1 1 0 0 0
1 1 5 1 1 0 1 0 0

2 1 2 1 4 0 0 1 0

−5 −3 −18 −4 −2 0 0 0 1

=

RHS

17
7

0

−24

Basica variables are {v1, v2,−z,−w}. c̄s = −18 is shown in bold and is negative.
So the variable selected to increase (enter the basis) is x3. The pivot element is
also shown in bold and is a1,3 = 13. After one pivot the sytem looks like

x1 x2 x3 x4 x5 v1 v2 −z −w
4

13

2

13
1 3

13

1

13

1

13
0 0 0

−
7

13

3

13
0 −

2

13

8

13
−

5

13
1 0 0

18

13

9

13
0 7

13

50

13
−

2

13
0 1 0

7

13
−

3

13
0 2

13
−

8

13

18

13
0 0 1

=

RHS
17

13
6

13

−
34

13

−
6

13

The next table looks like:

x1 x2 x3 x4 x5 v1 v2 −z −w
3

8

1

8
1 2

8
0 1

8
−
1

8
0 0

−
7

8

3

8
0 −

2

8
1 −

5

8

13

8
0 0

38

8
−
6

8
0 12

8
0 18

8
−
50

8
1 0

0 0 0 0 0 1 1 0 1

=

RHS
10

8
6

8

−
44

8

0

Now if remove all traces of artificiality since we have reached the end of Phase
I with z = 0, we get:

x1 x2 x3 x4 x5 −z
3

8

1

8
1 2

8
0 0

−
7

8

3

8
0 −

2

8
1 0

38

8
−
6

8
0 12

8
0 1

=

RHS
10

8
6

8

−
44

8

Now we continue Phase II. The next table looks like:

x1 x2 x3 x4 x5 −z
2

3
0 1 1

3
0 0

−
7

3
1 0 −

2

3
1 0

3 0 0 1 2 1

=

RHS

1
2

−4
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At this point we have an optimal solution: x1 = x4 = x5 = 0;x2 = 2;x3 =
1; z = 4.

1 Revised Simplex Method

This is also known as the simplex method using multipliers. Consider a linear
program:

min z : [BxB +ANBxNB] = b
cBxB + cNBxNB − z = 0

where B is current basis. Assume that the equations are linearly indepen-

dent. Hence B−1 exists. Hence the inverse of

[
B 0
cB 1

]
exists and is given

by: [
B−1 0

−cBB−1 1

]
=

[
B−1 0
π 1

]

The canonical form corresponding to this basis is obtained by multiplying

the system (enlarged by including the z row) by

[
B−1 0

−cBB−1 1

]
. The last row

of the result is [c̄, 1] and is obtained by multiplying the vector [π, 1] times the
original (enlarged) matrix. Using this we can check if c̄ ≥ 0 or not. If it is not, we
can also find s that satisfies c̄s = min c̄j < 0. This yields the entering variable.
To find the updated column (that in the canonical form) of this variable we

need to multiply

[
B−1 0

−cBB−1 1

] [
A.s
cs

]
. Similar process gives the updated

RHS by the relation

[
B−1 0

−cBB−1 1

] [
b

−z0

]
. Now doing a pivot operation on

the subsystem that includes these three yields the new inverse and the process
is repeated until the usual termination conditions are observed. That the new
inverse is obtained in this manner follows by observing that if an identity matrix
is appended to the system we always have the inverse in its position.

One advantage of this procedure is that many entries in the updated form
need not be calculated; this results in saving computations if the number of
variables exceeds the number of equations by a significant amount. While this
advantage is stressed in many texts, what is more important is that we can
formulate problems with enormous number of variables that arise from com-
binatorial explosion in some applications; these are, in my opinion, the main
advantage of this method. This often goes under the name of (delayed) column
generation technique.

We now show the above example in Revised Simplex mmethod:
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The first table (original data) is still the same

x1 x2 x3 x4 x5 v1 v2 −z −w

4 2 13 3 1 1 0 0 0
1 1 5 1 1 0 1 0 0

2 1 2 1 4 0 0 1 0

−5 −3 −18 −4 −2 0 0 0 1

=

RHS

17
7

0

−24

However, we use for calculations only the following part:

x1 x2 x3 x4 x5 v1 v2 −z −w

13 1 0 0 0
5 0 1 0 0

2 0 0 1 0

−5 −3 −18 −4 −2 0 0 0 1

=

RHS

17
7

0

−24

and when we perform the pivot operation we get:

x1 x2 x3 x4 x5 v1 v2 −z −w
1

13
0 0 0

− 5

13
1 0 0

− 2

13
0 1 0

18

13
0 0 1

=

RHS
17

13
6

13

−34

13

− 6

13

Basis: (x1, v2,−z,−w). B̂−1 is shown under (v1, v2,−z,−w) [this will be always
the under these columns]. The vector (−dBB

−1, 1) = (18
13
, 0, 0, 1).

The vector

b̄1
b̄2

−z̄0

−w̄0

=

17

13
6

13

−
34

13

−
6

13

. The vector d̄ = d = dBB
−1A = 7

13
−

3

13
0 2

13
−

8

13

18

13
0 0 1 .

Hence entering variable is x5 and its updated column is given by B̂−1A.5 =

1

13
0 0 0

−
5

13
1 0 0

−
2

13
0 1 0

18

13
0 0 1

•

1
1

4

−2

=

1

13
8

13

50

13

−
8

13

.

Thus, we have our new skeletal system

x1 x2 x3 x4 x5 v1 v2 −z −w
1

13

1

13
0 0 0

8

13
− 5

13
1 0 0

50

13
− 2

13
0 1 0

−
8

13

18

13
0 0 1

=

RHS
17

13
6

13

−34

13

−
6

13

Ratio test yields the bold element as the new pivot element and we do the pivot
on the skeletal system. The new basis is (x1, x5,−z,−w) and we know Phase I
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has come to an end. The new table looks like

x1 x2 x3 x4 x5 v1 v2 −z −w
1

8
−
1

8
0 0

−
5

8

13

8
0 0

18

8
−50

8
1 0

1 1 0 1

=

RHS
10

8
6

8

−44

8

0

At this point we remove the last row and the column under −w to get a skeletal
system for the original problem. This yields:

x1 x2 x3 x4 x5 v1 v2 −z
1

8
−
1

8
0

−5

8

13

8
0

18

8
−
50

8
1

=

RHS
10

8
6

8

−
44

8

with the basis (x3, x5,−z). c̄ = c − cBB
−1A = 38

8
−
6

8
0 12

8
0 1 .

Thus entering variable at this stage (of Phase II) is x2. To find the variable that
drops out we need the new skeletal structure which is obtained by "erecting"
the column for x2 in the updated table and this looks like:

x1 x2 x3 x4 x5 −z
1

8

2

8
0 0

3

8
−
2

8
1 0

−
6

8

12

8
0 1

=

RHS
10

8
6

8

−44

8

The bold element in the second row is the new pivot element and performing
this pivot operation gives us the table:

x1 x2 x3 x4 x5 −z
1

3
0 0

−2

3
1 0

1 2 1

=

RHS

1
2

−4

with basis (x3, x2,−z). Calculating the new c̄ = c−cBB
−1 = 3 0 0 1 2 1 .

We now have reached optimiality since c̄ ≥ 0.
Optimal solution is x3 = 1;x2 = 2;−z = −4;x3 = x4 = x5 = 0.
Instead of storing the entire inverse, we can store the inverse between suc-

cessive steps. These are elementary matrices and hence easy to store. This is
discussed in your book under product form of the inverse.

Example II:
min 40x1 + 36x2

x1 ≤ 8
x2 ≤ 10

5x1 + 3x2 ≥ 45
x1 ≥ 0;x2 ≥ 0
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Initial canonical form for Phase I looks like:

x1 x2 s1 s2 s3 v1 −z −w

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
5 3 0 0 −1 1 0 0

40 36 0 0 0 0 1 0

−5 −3 0 0 1 0 0 1

=

RHS

8
10
45
0

−45

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

The skeletal system that the revised simplex method works with is as shown
below: first we get −5 −3 0 0 1 0 0 1 from which we conclude

that the entering variable is x1. Now we get the column (updated) for this
variable and the RHS as shown below and affix an indentity matrix next to
RHS.

x1 x2 s1 s2 s3 v1 −z −w

1

0
5

40

−5 −3 0 0 1 0 0 1

=

RHS

8
10
45
0

−45

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

Pivoting on this system we get:

RHS

8
10
5

−320

−5

1 0 0 0 0
0 1 0 0 0
−5 0 1 0 0

−40 0 0 1 0

5 0 0 0 1

The matrix next to the (updated RHS) is the new inverse. 5 0 0 0 1
corresponds to the new simplex multipliers [(σ, 1)] (σ is used for Phase I and
π for Phase II).

5 0 0 0 1

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
5 3 0 0 −1 1 0 0

40 36 0 0 0 0 1 0

−5 −3 0 0 1 0 0 1

= 0 −3 5 0 1 0 0 1

which is the bottom row of the updated matrix. This lets us know that the
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entering variable is x2. So we construct the new skeletal system by

1 0 0 0 0
0 1 0 0 0
−5 0 1 0 0

−40 0 0 1 0

5 0 0 0 1

x

0
1
3

36

−3

=

0
1
3

36

−3

to get

0
1
3

36

−3

8
10
5

−320

−5

1 0 0 0 0
0 1 0 0 0
−5 0 1 0 0

−40 0 0 1 0

5 0 0 0 1

and pivot on this system to get the new inverse and the new RHS. This process
is repeated till optimality or unboundedness. I have shown Phase I so far. When
Phase I is over, we remove all artificial variables, and the last row and column
of the inverse and continue.
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