
1 Introduction

Matroids are combinatorial structures that abstract the properties of linear in-
dependence of vector spaces and related properties of graphs. One of the first
papers is due to H.Whitney (1935). There is a considerable amount of work
since then and this is a rich area dealing with structural as well optimization
results. Occasionally there is a combination of both as in testing of total uni-
modularity. There are several aspects to matroids and each can be used to define
them. We will show this and the relationship between these by considering them
one by one.

2 General Definitions

2.1 Independence

This is a direct generalization of the notion of linear independence in vector
spaces.

Definition 1 (IS) Let F be a nonempty family of subsets of a finite set E that
satisfies the property: F ∈ F , G ⊂ F =⇒ G ∈ F. Then, the pair [E,F ] is called
an independence system. Members of F are called independent sets.

Definition 2 (MI.1) An independence system [E, F ] satisfying the property:

[F ∈ F ,G ∈ F , |G| > |F |] =⇒ ∃ g ∈ G− F 3 F ∪ {g} ∈ F

is called a matroid.

Definition 3 (MI.2) An independence system [E, F ] satisfying the property:
[All maximal independent subsets of a set A ⊂ E, have the same size.] is called
a matroid. The size of such a maximal subset is called the rank r(A) of A.

Definition 4 (MR.1) Given a finite set E, a function r : 2E → Z+ is called
a rank function if it satisfies:

(i)r(φ) = 0;
(ii)S ⊆ T ⊆ E =⇒ r(T ) ≥ r(S);
(iii)r(S) ≤ |S| ;
(iv)r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T )∀S, T ⊆ E
then the pair [E, r] is called a matroid.

Definition 5 (MR.2) Given a finite set E, a function r : 2E → Z+ is called
a rank function if it satisfies:
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(i)r(φ) = 0
(ii)S ⊆ T ⊆ E =⇒ r(T ) ≥ r(S);
(iii)r(S ∪ {e}) = r(S) or r(S) + 1 ∀ S ⊂ E.
(iv)[r(S ∪ {e1}) = r(S ∪ {e2}) = r(S)] =⇒ r(S ∪ {e1, e2}) = r(S)
then the pair [E, r] is called a matroid.

Definition 6 (MC.1) Circuits form a clutter ( a family of subsets none of
which is contained in another) on E. If C is a clutter on E that satisfies the
property:

C1 ∈ C;C2 ∈ C; e1 ∈ C1 ∩ C2; e2 ∈ C1 − C2

⇓
∃ C3 ∈ C;C3 ⊂ C1 ∪ C2; e2 ∈ C3; e1 /∈ C3

then the pair [E, C] is called a matroid.
Definition 7 (MC.2) If C is a clutter on E that satisfies the property:

C1 ∈ C;C2 ∈ C; e1 ∈ C1 ∩ C2
⇓

∃ C3 ∈ C;C3 ⊆ C1 ∪ C2 − {e1}
then the pair [E, C] is called a matroid.
Definition 8 (MB.1) If B is a clutter on E that satisfies the property:

[B ∈ B;B0 ∈ B; e0 ∈ B0 −B] =⇒ [∃ e ∈ B −B0 3 {B0 − e0 + e} ∈ B]
then the pair [E,B] is called a matroid.
Definition 9 (MB.2) If B is a clutter on E that satisfies the property:

[B ∈ B;B0 ∈ B; e0 ∈ B0 −B] =⇒ [∃ e ∈ B −B0 3 {B − e+ e0} ∈ B]
then the pair [E,B] is called a matroid.
There are many other ways of defining matroids some of which are quite

useful. First we show how to relate these concepts.
Given ??: (i)r(S) = maxT⊆S;T∈F |T |; (ii) C is the collection of minimal (in

the set theoretic sense) subsets C of E 3 C /∈ F ; (iii)B is the collection of
maximal (again in the set theoretic sense) subsets B of E 3 B ∈ F .
Given ??: (i)F is the collection of subsets F of E 3 |F | = r(F ); (ii) B and

C are defined as above in ??.
Given ??:(i)F is the collection of subsets F of E 3 ∃ no C ∈ C;C ⊆ F ; (ii)

B and r are defined as in ??.
Given ??: (i)F is the collection of subsets F of E that are subsets of some

member of B; (ii)r and C are defined as in ??.
Exercise: Show the equivalence of all these definitions.
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3 Examples

1. E is a (finite) set of vectors in a vector space and F is the collection of
linearly independent vectors. This type of matroids are called linear (or
representable) matroids.

2. E is the set of edges of an undirected graph and F is the collection os
subsets of edges that form no loop (these are called forests). This is really
an example of the previous type. This type is known as graphic matroid

3. E is a finite set and F = {S : S ⊆ E; |S| ≤ k}. Such matroids are called
cardinality matroids. If k = |E|, the matroid is called a free matroid. If
E = ∪Ei where Ei are disjoint, and F = {F : F = ∪Fi; |Fi| ≤ ki;Fi ⊆
Ei}, then the matroid is called a partition matroid.

4. E is the set of arcs in a directed graph and F is the collection of subsets F
of E with the property that no more than one arc enters (leaves) a node.

5. As in example 2 except we have any one additional edge. This is called a
1-forest.

6. Making matroids from other matroids: Let M = [E,F ] = [E,B] =
[E, C] = [E, r] be a matroid. Then:

(i) Let Fk = [F : F ∈ F ; |F | ≤ k]. Then, Mk = [E,Fk] is a matroid called
the k-truncation of M.
(ii) Let ¹B = [B̄ : B̄ = E − B for some B ∈ B]. Then, M∗ = [E, ¹B] is a

matroid called the dual of M . Please note that: (M∗)∗ =M .
(iii) Let F\e = [F : F ∈ F ; e /∈ F ]. Then M\e = [E − e,F\e] is a matroid

obtained by deleting e in the original matroid M .
(iv)M/e = [E− e,F/e] = (M∗\e)∗ is a matroid obtained by contracting e in

the original matroid. Matroids obtained by a sequence of deletions and contrac-
tions (the order does not matter) are called minors of the original matroid.
Some boring but useful results:

1. r(S ∪ T ) ≤ r(S) + r(T )

2. r(G ∪ {e}) = r(G) ∀ e ∈ F =⇒ r(G ∪ F ) = r(G); maximal set H ⊇ G 3
r(H) = r(G) is called the span of G. This definition is similar to the one
in vector spaces.

3. r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ). A function satisfying this property is
said to be a submodular function.

4. r(S) ≤ |S|.
5. [e /∈ S, ∃ C ∈ C, e ∈ C ⊆ S ∪ {e}]⇐⇒ [r(S ∪ {e}) = r(S)].
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6. [B ∈ B, B0 ∈ B] =⇒ [|B| = |B0|]. This value is called the rank of the
matroid.

7. Single element dependent sets are called self loops. Dependent sets whose
cardinality is 2 are called parallel elements. Two elements that are in
parallel in M∗ are said to be in series in M .

8. A set S is said to be closed (flat, subspace) if r(S ∪ e) = r(S) + 1 ∀ e /∈ S.

9. A monotone nonnegative integral submodular function f that also satisfies
the relation f(S) ≤ |S| is the rank function of a matroid.

10. Let L be a lattice of subsets of a finite set E 3(i)it is ordered by inclusion;
(ii)closed under intersection ; and (iii)contains φ, and S. Then, A ∪B ⊆
A ∨ B;A ∧ B = A ∩ B. Let f : L 7−→ Z+ be a nonnegative integral
submodular function with f(φ) = 0; i.e. f(A ∧ B) + f(A ∨ B) ≤ f(A) +
f(B) ∀ A,B. Then ρ(S) = infT∈L[f(T ) + |S − T |] is the rank function of
a matroid whose F is given by: F = [S : S ⊂ E; f(T ) ≥ |S ∩ T | ∀ T ∈ L].

11. Let [E,F ] be an independence system satisfying the property: ∀ S ⊂
E, every maximal subset T of S which is a member of F has the same
cardinality (and we call this value the rank). Then [E,F ] is a matroid.

12. Let M/S be obtained by contraction of S ⊂ E. Circuits of this matroid
are the minimal members of CS = [CS : CS = C ∩S 6= φ for some C ∈ C].
Independent sets of this matroid are given by FS = [J : J ⊂ S;J ∪K ∈ F
for some maximal independent set K in E − S].

Theorem 1 Let C be a clutter on E satisfying: [C1 ∈ C, C2 ∈ C, e ∈ C1∩C2 ] =⇒
[∃ C3 ∈ C, C3 ⊆ C1 ∪ C2 − {e}]. Then [E, C] is a matroid.
Proof:We need to show that [C1 ∈ C, C2 ∈ C, e1 ∈ C1∩C2, and e2 ∈ C1−C2] =⇒
[∃ C3 ∈ C, C3 ⊆ C1 ∪ C2, e2 ∈ C3, e1 /∈ C3].
Suppose the theorem is false for some set {e1, e2, C1, C2}. For this specific

e2, choose the remaining triple so that among all violations of the theorem
with e2, C1 ∪ C2 is minimal. By hypothesis, ∃ C3 ⊂ C1 ∪ C2 − e1. Since
C is a clutter, (C3 ⊂ C1 is false and hence) ∃ e3 ∈ (C2 − C1) ∩ C3. Again
by hypothesis, ∃ C4 ⊂ C3 ∪ C2 − e3. Since C4 ⊂ C2 is also false, ∃ e4 ∈
(C1 − C2) ∩ C4. e2 ∈ C4 =⇒ e2 ∈ C3 a contradiction to the hypothesis that
the set {e1, e2, C1, C2} is a violator of the theorem. Hence e2 ∈ C1 − C4. But
e4 ∈ C1 ∩ C4. e3 ∈ C1 ∪ C2; e3 /∈ C1; e3 /∈ C4; hence e3 /∈ C1 ∩ C4. Hence
C1 ∪ C4 ⊂ C1 ∪ C2. e2 ∈ C1 − C4; e4 ∈ C1 ∩ C4;C1 ∪ C4 ⊂ C1 ∪ C2. By
minimality of the violation of C1 ∪ C2,∃ C ∈ C 3 e2 ∈ C;C ⊆ C1 ∪ C4 − e4.
But since e2 ∈ C; C ⊂ C1 ∪ C2 we have e1 ∈ C. (otherwise C does the
job of the theorem). Thus the theorem is violated for e1, e2, C and C2. But
e4 /∈ C; e4 /∈ C2; e4 ∈ C1. Hence C ∪ C2 ⊂ C1 ∪ C2. This again contradicts the
minimality of the violator chosen.2
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4 (Single) Matroid (Linear) Optimization Prob-
lems

Given a matroid M = [E,F ] = [E,B] and c : E 7−→ R :
(i)max c(F ) : F ∈ F where c(F ) =

P
e∈F ce.

(ii)max c(B) : B ∈ B where c(B) =Pe∈B ce.
(iii)maxF∈F mine∈F ce OR (iii’) minF∈F maxe∈F ce
(iv)maxB∈Bmine∈B ce OR (iii’) minB∈Bmaxe∈B ce
(v)Given B ∈ B, let cB be the ordered vector (in decreasing order) of ce of

e in B.
Find B ∈ B 3cB ≥ cB0 ∀ B0 ∈ B.

4.1 Transversal Matroids and Gale Problem

Let E = [e1, e2, ..., en] be a finite set and let Q = [q1, q2, ..., qm] be a family
of (not necessarily distinct) subsets of E. Then the set T = [ej1 , ej2 , ..., ejt ]
is called a partial transversal of size t of Q if the elements in T are distinct
members of E and there are distinct indices ik, 3 ejk ∈ qik for 1 ≤ k ≤ t. The
set T is called a transversal or a system of distinct representatives if t = m. We

can visualize a partial transversal by the representation:
ej1 ej2 . . ejt
qi1 qi2 . . qit

.

We can visualize this from the point of view of matching on bipartite graphs as
follows: One set of nodes correspond to the set E and the other to the family
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Q as shown

e1

e2

e3

e4

e5

e6

e7

e8

q1

q2

q3

q4

q5

q6

A matching in this graph corresponds to a partial transversal. In the above
diagram, {e1, e2, ..., e6} constitute a partial transversal.
Theorem 2 Let E and Q be as above. Then Ma = [E,F ] is a matroid if F
is a family of partial transversals of Q. Mb = [Q,Q] is a matroid if Q is the
collection of subsets of Q that have transversals.

Proof: It should be clear that both are independence systems. We need to
show the additional axiom for matroid. Suppose we have two members F and
G of F with |G| = |F |+ 1. Then their representations look like:

F =
ej1 ej2 . . ejt−1
qi1 qi2 . . qit−1

;G =
ej01 ej02 . . ej0t
qi01 qi02 . . qi0t

Suppose ejk ≡ ej0k and qik ≡ qi0k for 1 ≤ k ≤ r. Since |G| > |F |, ∃ i0k 3 this
i0 is distinct from all those in F . If

ejk
qi0k

is not in F we are done. On the

other hand suppose that ej0k = eju for some u ≥ r + 1 then replacing qiu by
qi0k yields another representation for F which shares one more in common with
G. Repeating this process we will eventually be able to grow F by an element
from G. This shows that Ma is a matroid. To show that Mb is a matroid use a
similar argument.
This theorem can also be proved using matching theory on the above graph.
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4.2 Optimal Assignments in an Ordered set

Lemma 3 Let M = [E,F ] be a matroid. Let the elements of E be totally
ordered and let this ordering be e1 > e2 > ... > en. ∃ an ordered subset
{f1, f2, ..., fk} = F ∈ F such that for any other ordered set {g1, g2, ..., gl} =
G ∈ F , we have l ≤ k and fi ≥ gi for i = 1, 2, ..., l. We call this set F a
Gale-optimal set.

Proof Perform the following algorithm known as the ”Greedy Algorithm” on
the above data.

Greedy Algorithm:

1. F ←− φ

2. for i←− 1 to n

3. if F ∪ {ei} ∈ F
4. then F ←− F ∪ {ei}
5. return F

Claim The set F produced by the above algorithm is Gale-optimal.

Proof of Claim Suppose not. Then there exists a G ∈ F such that the con-
ditions claimed in the lemma do not hold. Let both F and G be ordered
as per the relation on E. Let k = min[j : gj > fj ]. Just before the greedy
algorithm selected the element fj , the subset of elements from F already

selected is F̂ = {fi : i < j} ∈ F . But Ĝ = {gi : i ≤ j} ∈ F .
¯̄̄
Ĝ
¯̄̄
>
¯̄̄
F̂
¯̄̄
and

since gj > fj and gi > gj for all i < j, each element of Ĝ is ”greater” than

fj . Moreover, since M is a matroid, ∃g ∈ Ĝ− F̂ such that F̂ ∪ {g} ∈ F .
This contradicts the fact that F was selected by the greedy algorithm.
This also completes the proof of the lemma.

Lemma 4 Let M = [E,F ] be an independence system for which the greedy
algorithm solves the problem: maxF∈F

P
e∈F w(e) for all w. Then, M is a

matroid.

Proof Let F,G be two elements in F and let |G| > |F | = k. Choose w as
follows:

w(e) =

 k + 2
k + 1
0

e ∈ F
e ∈ G− F
e /∈ G ∪ F
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The greedy algorithm will first select all elements of F . But sinceX
e∈G

w(e) = (k + 2)(|G ∩ F |+ (k + 1) |G− F |

≥ (k + 1)2

> (k + 2)k

=
X
e∈F

w(e)

Hence the algorithm must select at least one element g ∈ (G−F ) such that
F ∪ {g} ∈ F . This shows that M is a matroid.

4.2.1 Matroid Union & Partition

Theorem 5 (Nash-Williams) Let M = [E,F ] be a matroid. Let Ê be a
set and h : E → Ê be a mapping from E to Ê. Let h(F ) = ∪e∈Fh(e). Let∧F = {F̂ : F̂ = h(F ) for some F ∈ F}. Then M̂ = [Ê, ∧F ] is a matroid.

Proof Let F̂ = h(F ); Ĝ = h(G);
¯̄̄
Ĝ
¯̄̄
>
¯̄̄
F̂
¯̄̄
; F̂ , Ĝ ∈ ∧F . Select F,G so that¯̄̄

F̂
¯̄̄
= |F | and

¯̄̄
Ĝ
¯̄̄
= |G|. This can be done since ê 6= f̂ =⇒ h−1(ê) 6=

h−1(f̂). Hence |G| > |F |. Hence ∃ p ∈ G − F such that F ∪ {p} ∈ F .
Let A = F ∩ G;BF , BG be such that |BF | = |BG| and for each f ∈ BF ,
∃ g ∈ BG with h(f) = h(g). For each element q in F −A− BF and each
element r in G−A−BG, we have h(q) 6= h(r). If g ∈ G−A−BG, we are
done. If g ∈ BG, replace f ∈ F with h(f) = h(g) by g and this increases
the set A. Please note that h(F ), h(G) are not altered by this. After a
finite number of steps, we get a g ∈ G−A−BG and hence we are done.

Corollary 6 Let Mi = [E,Fi]; 1 ≤ i ≤ k be matroids. Let M = [E,F (1)] where
F (1) = {F : F = ∪Fi for some collection Fi ∈ Fi}. Then M is a matroid and
this operation is called the union of matroids and we write M = ∪Mi.

Proof Let Ei; 1 ≤ i ≤ k be k copies of E. These are considered distinct sets for
now. Let M (2) = [∪Ei,F (2)] where F (2) = {F : F = ∪Fi (with multiple
copies of an element if it occurs many times) for some collection Fi ∈ Fi}.
The difference between a member of F (1) and F (2) is that the second may
contains duplicate copies of an element while the first does not. It is very
easy to show that M (2) is a matroid (sometimes referred to as disjoint
union). Now let h : ∪Ei → E be the mapping that maps all copies of an
element to the one copy in E. It is easy to see that h(F(2)) = F (1). So
the result follows from the above theorem.

But the above result does not provide for an oracle for the union given
the oracles for individual matroids. This was done by J. Edmonds through an
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algorithm for ”Matroid Partition”. This algorithm produces the sets Fi given
an F ∈ F (1) or shows that the given F /∈ F (1). We describe this work below:

Theorem 7 Let Mi; 1 ≤ i ≤ k and M be as above. A set F can be partitioned
into sets Fi ∈ Fi (i.e. F ∈ F (1))if and only if

|A| ≤
kX
i=1

ri(A) ∀A ⊆ F

Proof It is easy to show that this is a necessary condition. To show that it is
sufficient, we use an algorithm.

Definition 10 Let F ⊆ A ⊆ E;F ∈ F where M = [E,F ] is a matroid. The
set S ⊆ A defined by the relation

S = F ∪ {e ∈ A : F ∪ {e} /∈ F}

is called the span of F in A with respect to matroid M and is denoted by
T (F,A,M). Informally, it is the set F together with all elements in A that are
dependent on F . This set can also be defined by the relation: It is the unique
maximal (with respect to set inclusion) set satisfying the relations: (i)F ⊆ S ⊆ A
and (ii)r(S) = r(F ) = |F |.

The algorithm uses the following ”primitive operation”: For an index i, a
F ∈ Fi, and an element e ∈ E − F , check if F ∪ {e} ∈ Fi and if the answer is
no find a circuit C ⊆ F ∪ {e} in matroid Mi.

4.2.2 Algorithm

Without loss, we assume that the set we want to partition is the set E itself.
Start with any family {Fi}; i = 1, 2, ..., n of disjoint sets satisfying the relations
Fi ∈ Fi. Any number of these may be empty. Let H = ∪Fi. We say that H is
partitionable with respect to {Mi}. Let e ∈ E −H. We show how to find a set
A ⊆ H ∪ {e} satisfying the condition

|A| >
kX
i=1

ri(A)

in which case we can not partition H ∪ {e} or show how to partition H ∪ {e}.
Phase I:
Start with j = 1;S0 = E. If there is an index i(j) such that

¯̄
Fi(j) ∩ Sj−1

¯̄
<

ri(j)(Sj−1), set Sj = T (Fi(j), Sj−1,Mi(j)) and increase j by 1. Sj $ Sj−1since

ri(j)(Sj) =
¯̄
Fi(j) ∩ Sj−1

¯̄
< ri(j)(Sj−1)
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If such an index does not exist, we have come to the end of Phase I and we
denote the last set by Sn. Clearly we have:

|Fi ∩ Sn| = ri(Sn) ∀i
Since {Fi} are disjoint, this implies

|H ∩ Sn| =
kX
i=1

ri(Sn)

Now if e ∈ Sn −H, we have

A = (H ∩ Sn) ∪ {e} ⊆ Sn

|A| = |H ∩ Sn|+ 1

>
kX
i=1

ri(Sn)

≥
kX
i=1

ri(A)

indicating that the set H ∪ {e} is not partitionable.
On the other hand if e ∈ E − (H ∪ Sn), then we can partition H ∪ {e} and

this is shown below:
Phase II:
Since the sets Sj are nested and since e /∈ Sn but e ∈ S0 = E, there is an

index h such that e /∈ Sh but e ∈ Sj for 0 ≤ j < h.
If Fi(h) ∪ {e} ∈ Fi(h), then set Fi(h) ←− Fi(h) ∪ {e} and we are done.
If not, there is a circuit C ⊆ Fi(h) ∪ {e} in matroid Mi(h).
Claim: C " Sh−1
Proof: Since [Sh = T (Fi(h), Sh−1,Mi(h))], if C ⊆ Sh−1, then e ∈ C would

imply that e ∈ Sh. This contradicts our assumption that e /∈ Sh.
Let m be the smallest index such that C " Sm. Note that 0 < m < h.
Let e0 ∈ C − Sm. Then {Fi(h) − {e0}} ∪ {e} ∈ Fi(h). Replacing Fi(h) by

F 0i(h) = {Fi(h) − {e0}} ∪ {e}
F 0i = Fi; i 6= i(h)

we have taken care of the element e but now have to take care of the element
e0. We know that e0 /∈ Sm and that e0 ∈ Sj ; 0 ≤ j < m.
The most important observation here is the following: If we did

Phase I with {H−e0}∪{e} instead of H, the sequence [(F 0i(1), S1), ...., (F 0i(m), Sm)]
is the same as the sequence [(Fi(1), S1), ...., (Fi(m), Sm)]. Since m < h, this
process must terminate in less than h steps at which time we can include the
element that is in place of e at that step.
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This completes the description of the algorithm and the proof of the theorem.
Using this algorithm we can also prove the following corollary to Nash-Williams
theorem.

Corollary 8 Let Mi = [E,Fi]; 1 ≤ i ≤ k be matroids. Let M = [E,F ] where
F (1) = {F : F = ∪Fi for some collection Fi ∈ Fi}. Then M is a matroid and
this operation is called the union of matroids and we write M = ∪Mi.

Proof We will use the definition MI.2 to do this. It is easy to verify that [E,F ]
is an independence system. Let H be any member of F . Starting with
this H by doing a Phase I of the algorithm we get a Sn such that

|H ∩ Sn| =
kX
i=1

ri(Sn)

Moreover, we showed, in the above discussion, that for any e ∈ Sn −H,
H ∪ {e} is not partitionable. Thus H is a maximal partitionable subset of
H ∪Sn. To show that it is a maximum cardinality partitionable subset of
H ∪ Sn, let H 0 be any other partitionable subset of H ∪ Sn. SinceH 0 ⊆
H ∪ Sn, it follows that

|H 0 − Sn| ≤ |H − Sn|

Since H 0 is partitionable, from the ”only if” part of the theorem above,
we have

|H 0 ∩ Sn| ≤
kX
i=1

ri(|H 0 ∩ Sn|)

≤
kX
i=1

ri(Sn)

= |H ∩ Sn|

Adding the two we get the desired result that |H 0| ≤ |H|. Now let A be
any subset of E. Suppose that the above H is any maximal partitionable
subset of A. Phase II of the algorithm shows that for any e ∈ E − (H ∪
Sn), H ∪ {e} is partitionable. Since we assumed that H is a maximal
partitionable subset of A, it follows that A ⊆ H ∪ Sn. Since H is a
maximum cardinality partitionable subset of H∪Sn, it is also a maximum
cardinality partitionable subset of A. Hence M is a matroid. This also
gives the method of constructing ”the oracle’ for M given such for each
Mi.
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4.3 Matroid Intersection:

We now take up another optimization problem in matroids.

Problem Given two matroids M1 = [E,F1] and M2 = [E,F2] on the same
ground set E and weights w(e) for each element e ∈ E, we want to solve
the problem

max
F∈F1∩F2

[
X
e∈F

w(e)

If w(e) ≡ 1 for all e ∈ E, this problem is known as cardinality version of
the intersection problem. This version can be solved by using the partition
algorithm>

Suppose F ∈ F1 ∩ F2. Then E − F contains a basis B∗2 of M
∗
2 the dual of

M2. Hence the set F ∪B∗2 is partitionable with respect to matroidsM1 andM
∗
2 .

Conversely, if A is a partitionable set of maximum size with respect to these
two matroids and is partitioned so that A = F1 ∪ F ∗2 , we may assume that F ∗2
is a basis of M∗2 and F1 ∈ F1 ∩ F2.
But there is a direct algorithm for the intersection problem which works for

arbitrary weights.
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