1 Introduction

Matroids are combinatorial structures that abstract the properties of linear independence of vector spaces and related properties of graphs. One of the first papers is due to H.Whitney (1935). There is a considerable amount of work since then and this is a rich area dealing with structural as well optimization results. Occasionally there is a combination of both as in testing of total unimodularity. There are several aspects to matroids and each can be used to define them. We will show this and the relationship between these by considering them one by one.

2 General Definitions

2.1 Independence

This is a direct generalization of the notion of linear independence in vector spaces.

Definition 1 (IS) Let \mathcal{F} be a nonempty family of subsets of a finite set E that satisfies the property: $F \in \mathcal{F}, G \subset F \Longrightarrow G \in \mathcal{F}$. Then, the pair $[E, \mathcal{F}]$ is called an independence system. Members of \mathcal{F} are called independent sets.

Definition $2(\mathrm{MI} .1)$ An independence system $[E, \mathcal{F}]$ satisfying the property:

$$
[F \in \mathcal{F}, G \in \mathcal{F},|G|>|F|] \Longrightarrow \exists g \in G-F \ni F \cup\{g\} \in \mathcal{F}
$$

is called a matroid.
Definition 3 (MI.2) An independence system $[E, \mathcal{F}]$ satisfying the property: [All maximal independent subsets of a set $A \subset E$, have the same size.] is called a matroid. The size of such a maximal subset is called the rank $r(A)$ of A.

Definition 4 (MR.1) Given a finite set E, a function $r: 2^{E} \rightarrow Z_{+}$is called a rank function if it satisfies:
(i) $r(\phi)=0$;
(ii) $S \subseteq T \subseteq E \Longrightarrow r(T) \geq r(S)$;
(iii) $r(S) \leq|S|$;
(iv) $r(S \cup T)+r(S \cap T) \leq r(S)+r(T) \forall S, T \subseteq E$
then the pair $[E, r]$ is called a matroid.
Definition 5 (MR.2) Given a finite set E, a function $r: 2^{E} \rightarrow Z_{+}$is called a rank function if it satisfies:
(i) $r(\phi)=0$
(ii) $S \subseteq T \subseteq E \Longrightarrow r(T) \geq r(S)$;
(iii) $r(S \cup\{e\})=r(S)$ or $r(S)+1 \forall S \subset E$.
(iv) $\left[r\left(S \cup\left\{e_{1}\right\}\right)=r\left(S \cup\left\{e_{2}\right\}\right)=r(S)\right] \Longrightarrow r\left(S \cup\left\{e_{1}, e_{2}\right\}\right)=r(S)$
then the pair $[E, r]$ is called a matroid.
Definition 6 (MC.1) Circuits form a clutter (a family of subsets none of which is contained in another) on E. If \mathcal{C} is a clutter on E that satisfies the property:

$$
\begin{gathered}
C_{1} \in \mathcal{C} ; C_{2} \in \mathcal{C} ; e_{1} \in C_{1} \cap C_{2} ; e_{2} \in C_{1}-C_{2} \\
\Downarrow \\
\exists C_{3} \in \mathcal{C} ; C_{3} \subset C_{1} \cup C_{2} ; e_{2} \in C_{3} ; e_{1} \notin C_{3}
\end{gathered}
$$

then the pair $[E, \mathcal{C}]$ is called a matroid.
Definition 7 (MC.2) If \mathcal{C} is a clutter on E that satisfies the property:

$$
\begin{gathered}
C_{1} \in \mathcal{C} ; C_{2} \in \mathcal{C} ; e_{1} \in C_{1} \cap C_{2} \\
\Downarrow \\
\exists C_{3} \in \mathcal{C} ; C_{3} \subseteq C_{1} \cup C_{2}-\left\{e_{1}\right\}
\end{gathered}
$$

then the pair $[E, \mathcal{C}]$ is called a matroid.
Definition 8 (MB.1) If \mathcal{B} is a clutter on E that satisfies the property:

$$
\left[B \in \mathcal{B} ; B^{\prime} \in \mathcal{B} ; e^{\prime} \in B^{\prime}-B\right] \Longrightarrow\left[\exists e \in B-B^{\prime} \ni\left\{B^{\prime}-e^{\prime}+e\right\} \in \mathcal{B}\right]
$$

then the pair $[E, \mathcal{B}]$ is called a matroid.
Definition 9 (MB.2) If \mathcal{B} is a clutter on E that satisfies the property:

$$
\left[B \in \mathcal{B} ; B^{\prime} \in \mathcal{B} ; e^{\prime} \in B^{\prime}-B\right] \Longrightarrow\left[\exists e \in B-B^{\prime} \ni\left\{B-e+e^{\prime}\right\} \in \mathcal{B}\right]
$$

then the pair $[E, \mathcal{B}]$ is called a matroid.
There are many other ways of defining matroids some of which are quite useful. First we show how to relate these concepts.

Given ??: (i) $r(S)=\max _{T \subseteq S ; T \in \mathcal{F}}|T|$; (ii) \mathcal{C} is the collection of minimal (in the set theoretic sense) subsets C of $E \ni C \notin \mathcal{F}$; (iii) \mathcal{B} is the collection of maximal (again in the set theoretic sense) subsets B of $E \ni B \in \mathcal{F}$.

Given ??: (i) \mathcal{F} is the collection of subsets F of $E \ni|F|=r(F)$; (ii) \mathcal{B} and \mathcal{C} are defined as above in ??.

Given ??:(i) \mathcal{F} is the collection of subsets F of $E \ni \exists$ no $C \in \mathcal{C} ; C \subseteq F$; (ii) \mathcal{B} and r are defined as in ??.

Given ??: (i) \mathcal{F} is the collection of subsets F of E that are subsets of some member of \mathcal{B}; (ii) r and \mathcal{C} are defined as in ??.

Exercise: Show the equivalence of all these definitions.

3 Examples

1. E is a (finite) set of vectors in a vector space and F is the collection of linearly independent vectors. This type of matroids are called linear (or representable) matroids.
2. E is the set of edges of an undirected graph and F is the collection os subsets of edges that form no loop (these are called forests). This is really an example of the previous type. This type is known as graphic matroid
3. E is a finite set and $\mathcal{F}=\{S: S \subseteq E ;|S| \leq k\}$. Such matroids are called cardinality matroids. If $k=|E|$, the matroid is called a free matroid. If $E=\cup E_{i}$ where E_{i} are disjoint, and $\mathcal{F}=\left\{F: F=\cup F_{i} ;\left|F_{i}\right| \leq k_{i} ; F_{i} \subseteq\right.$ $\left.E_{i}\right\}$, then the matroid is called a partition matroid.
4. E is the set of arcs in a directed graph and F is the collection of subsets F of E with the property that no more than one arc enters (leaves) a node.
5. As in example 2 except we have any one additional edge. This is called a 1-forest.
6. Making matroids from other matroids: Let $M=[E, \mathcal{F}]=[E, \mathcal{B}]=$ $[E, \mathcal{C}]=[E, r]$ be a matroid. Then:
(i) Let $\mathcal{F}_{k}=[F: F \in \mathcal{F} ;|F| \leq k]$. Then, $M_{k}=\left[E, \mathcal{F}_{k}\right]$ is a matroid called the k-truncation of M.
(ii) Let $\mathcal{F}=[\bar{B}: \bar{B}=E-B$ for some $B \in \mathcal{B}]$. Then, $M^{*}=[E, \mathcal{B}]$ is a matroid called the dual of M. Please note that: $\left(M^{*}\right)^{*}=M$.
(iii) Let $\mathcal{F} \backslash e=[F: F \in \mathcal{F} ; e \notin F]$. Then $M \backslash e=[E-e, \mathcal{F} \backslash e]$ is a matroid obtained by deleting e in the original matroid M.
(iv) $M / e=[E-e, \mathcal{F} / e]=\left(M^{*} \backslash e\right)^{*}$ is a matroid obtained by contracting e in the original matroid. Matroids obtained by a sequence of deletions and contractions (the order does not matter) are called minors of the original matroid.

Some boring but useful results:

1. $r(S \cup T) \leq r(S)+r(T)$
2. $r(G \cup\{e\})=r(G) \forall e \in F \Longrightarrow r(G \cup F)=r(G)$; maximal set $H \supseteq G \ni$ $r(H)=r(G)$ is called the span of G. This definition is similar to the one in vector spaces.
3. $r(S \cup T)+r(S \cap T) \leq r(S)+r(T)$. A function satisfying this property is said to be a submodular function.
4. $r(S) \leq|S|$.
5. $[e \notin S, \exists C \in C, e \in C \subseteq S \cup\{e\}] \Longleftrightarrow[r(S \cup\{e\})=r(S)]$.
6. $\left[B \in \mathcal{B}, B^{\prime} \in \mathcal{B}\right] \Longrightarrow\left[|B|=\left|B^{\prime}\right|\right]$. This value is called the rank of the matroid.
7. Single element dependent sets are called self loops. Dependent sets whose cardinality is 2 are called parallel elements. Two elements that are in parallel in M^{*} are said to be in series in M.
8. A set S is said to be closed (flat, subspace) if $r(S \cup e)=r(S)+1 \forall e \notin S$.
9. A monotone nonnegative integral submodular function f that also satisfies the relation $f(S) \leq|S|$ is the rank function of a matroid.
10. Let L be a lattice of subsets of a finite set $E \ni(\mathrm{i})$ it is ordered by inclusion; (ii)closed under intersection ; and (iii)contains ϕ, and S. Then, $A \cup B \subseteq$ $A \vee B ; A \wedge B=A \cap B$. Let $f: L \longmapsto \mathbf{Z}_{+}$be a nonnegative integral submodular function with $f(\phi)=0$; i.e. $f(A \wedge B)+f(A \vee B) \leq f(A)+$ $f(B) \forall A, B$. Then $\rho(S)=\inf _{T \in L}[f(T)+|S-T|]$ is the rank function of a matroid whose \mathcal{F} is given by: $\mathcal{F}=[S: S \subset E ; f(T) \geq|S \cap T| \forall T \in L]$.
11. Let $[E, \mathcal{F}]$ be an independence system satisfying the property: $\forall S \subset$ E, every maximal subset T of S which is a member of \mathcal{F} has the same cardinality (and we call this value the rank). Then $[E, \mathcal{F}]$ is a matroid.
12. Let M / S be obtained by contraction of $S \subset E$. Circuits of this matroid are the minimal members of $C_{S}=\left[C_{S}: C_{S}=C \cap S \neq \phi\right.$ for some $\left.C \in C\right]$. Independent sets of this matroid are given by $F_{S}=[J: J \subset S ; J \cup K \in F$ for some maximal independent set K in $E-S]$.

Theorem 1 Let \mathcal{C} be a clutter on E satisfying: $\left[C_{1} \in \mathcal{C}, C_{2} \in \mathcal{C}, e \in C_{1} \cap C_{2}\right] \Longrightarrow$ $\left[\exists C_{3} \in \mathcal{C}, C_{3} \subseteq C_{1} \cup C_{2}-\{e\}\right]$. Then $[E, \mathcal{C}]$ is a matroid.

Proof:We need to show that $\left[C_{1} \in \mathcal{C}, C_{2} \in \mathcal{C}, e_{1} \in C_{1} \cap C_{2}\right.$, and $\left.e_{2} \in C_{1}-C_{2}\right] \Longrightarrow$ $\left[\exists C_{3} \in \mathcal{C}, C_{3} \subseteq C_{1} \cup C_{2}, e_{2} \in C_{3}, e_{1} \notin C_{3}\right]$.

Suppose the theorem is false for some set $\left\{e_{1}, e_{2}, C_{1}, C_{2}\right\}$. For this specific e_{2}, choose the remaining triple so that among all violations of the theorem with $e_{2}, C_{1} \cup C_{2}$ is minimal. By hypothesis, $\exists C_{3} \subset C_{1} \cup C_{2}-e_{1}$. Since \mathcal{C} is a clutter, $\left(C_{3} \subset C_{1}\right.$ is false and hence) $\exists e_{3} \in\left(C_{2}-C_{1}\right) \cap C_{3}$. Again by hypothesis, $\exists C_{4} \subset C_{3} \cup C_{2}-e_{3}$. Since $C_{4} \subset C_{2}$ is also false, $\exists e_{4} \in$ $\left(C_{1}-C_{2}\right) \cap C_{4} . e_{2} \in C_{4} \Longrightarrow e_{2} \in C_{3}$ a contradiction to the hypothesis that the set $\left\{e_{1}, e_{2}, C_{1}, C_{2}\right\}$ is a violator of the theorem. Hence $e_{2} \in C_{1}-C_{4}$. But $e_{4} \in C_{1} \cap C_{4} . e_{3} \in C_{1} \cup C_{2} ; e_{3} \notin C_{1} ; e_{3} \notin C_{4}$; hence $e_{3} \notin C_{1} \cap C_{4}$. Hence $C_{1} \cup C_{4} \subset C_{1} \cup C_{2} . e_{2} \in C_{1}-C_{4} ; e_{4} \in C_{1} \cap C_{4} ; C_{1} \cup C_{4} \subset C_{1} \cup C_{2}$. By minimality of the violation of $C_{1} \cup C_{2}, \exists C \in \mathcal{C} \ni e_{2} \in C ; C \subseteq C_{1} \cup C_{4}-e_{4}$. But since $e_{2} \in C ; C \subset C_{1} \cup C_{2}$ we have $e_{1} \in C$. (otherwise C does the job of the theorem). Thus the theorem is violated for e_{1}, e_{2}, C and C_{2}. But $e_{4} \notin C ; e_{4} \notin C_{2} ; e_{4} \in C_{1}$. Hence $C \cup C_{2} \subset C_{1} \cup C_{2}$. This again contradicts the minimality of the violator chosen.

4 (Single) Matroid (Linear) Optimization Problems

Given a matroid $M=[E, \mathcal{F}]=[E, \mathcal{B}]$ and $c: E \longmapsto \mathbf{R}$:
(i) $\max c(F): F \in \mathcal{F}$ where $c(F)=\sum_{e \in F} c_{e}$.
(ii) $\max c(B): B \in \mathcal{B}$ where $c(B)=\sum_{e \in B} c_{e}$.
(iii) $\max _{F \in \mathcal{F}} \min _{e \in F} c_{e}$ OR (iii') $\min _{F \in \mathcal{F}} \max _{e \in F} c_{e}$
(iv) $\max _{B \in \mathcal{B}} \min _{e \in B} c_{e}$ OR (iii') $\min _{B \in \mathcal{B}} \max _{e \in B} c_{e}$
(v)Given $B \in \mathcal{B}$, let c_{B} be the ordered vector (in decreasing order) of c_{e} of e in B.

Find $B \in \mathcal{B} \ni c_{B} \geq c_{B^{\prime}} \forall B^{\prime} \in \mathcal{B}$.

4.1 Transversal Matroids and Gale Problem

Let $E=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ be a finite set and let $Q=\left[q_{1}, q_{2}, \ldots, q_{m}\right]$ be a family of (not necessarily distinct) subsets of E. Then the set $T=\left[e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{t}}\right]$ is called a partial transversal of size t of Q if the elements in T are distinct members of E and there are distinct indices $i_{k}, \ni e_{j_{k}} \in q_{i_{k}}$ for $1 \leq k \leq t$. The set T is called a transversal or a system of distinct representatives if $t=m$. We can visualize a partial transversal by the representation: $\begin{array}{lllll}e_{j_{1}} & e_{j_{2}} & \cdot & \cdot & e_{j_{t}} \\ q_{i_{1}} & q_{i_{2}} & \cdot & \cdot & q_{i_{t}}\end{array}$. We can visualize this from the point of view of matching on bipartite graphs as follows: One set of nodes correspond to the set E and the other to the family
Q as shown

A matching in this graph corresponds to a partial transversal. In the above diagram, $\left\{e_{1}, e_{2}, \ldots, e_{6}\right\}$ constitute a partial transversal.
Theorem 2 Let E and Q be as above. Then $M_{a}=[E, \mathcal{F}]$ is a matroid if \mathcal{F} is a family of partial transversals of $Q . M_{b}=[Q, \mathcal{Q}]$ is a matroid if \mathcal{Q} is the collection of subsets of Q that have transversals.

Proof: It should be clear that both are independence systems. We need to show the additional axiom for matroid. Suppose we have two members F and G of F with $|G|=|F|+1$. Then their representations look like:

$$
F=\begin{array}{lllll}
e_{j_{1}} & e_{j_{2}} & \cdot & \cdot & e_{j_{t-1}} \\
q_{i_{1}} & q_{i_{2}} & \cdot & \cdot & q_{i_{t-1}}
\end{array} ; G=\begin{array}{lllll}
e_{j_{1}^{\prime}}^{\prime} & e_{j_{2}^{\prime}} & \cdot & \cdot & e_{j_{t}^{\prime}} \\
q_{i_{1}^{\prime}} & q_{i_{2}^{\prime}} & \cdot & \cdot & q_{i_{t}^{\prime}}
\end{array}
$$

Suppose $e_{j_{k}} \equiv e_{j_{k}^{\prime}}$ and $q_{i_{k}} \equiv q_{i_{k}^{\prime}}$ for $1 \leq k \leq r$. Since $|G|>|F|, \exists i_{k}^{\prime} \ni$ this i^{\prime} is distinct from all those in F. If $\begin{aligned} & e_{j_{k}} \\ & q_{i_{k}^{\prime}}\end{aligned}$ is not in F we are done. On the other hand suppose that $e_{j_{k}^{\prime}}=e_{j_{u}}$ for some $u \geq r+1$ then replacing $q_{i_{u}}$ by $q_{i_{k}^{\prime}}$ yields another representation for F which shares one more in common with G. Repeating this process we will eventually be able to grow F by an element from G. This shows that M_{a} is a matroid. To show that M_{b} is a matroid use a similar argument.

This theorem can also be proved using matching theory on the above graph.

4.2 Optimal Assignments in an Ordered set

Lemma 3 Let $M=[E, \mathcal{F}]$ be a matroid. Let the elements of E be totally ordered and let this ordering be $e_{1}>e_{2}>\ldots>e_{n} . \exists$ an ordered subset $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}=F \in \mathcal{F}$ such that for any other ordered set $\left\{g_{1}, g_{2}, \ldots, g_{l}\right\}=$ $G \in \mathcal{F}$, we have $l \leq k$ and $f_{i} \geq g_{i}$ for $i=1,2, \ldots, l$. We call this set F a Gale-optimal set.

Proof Perform the following algorithm known as the "Greedy Algorithm" on the above data.

Greedy Algorithm:

1. $F \longleftarrow \phi$
2. \quad for $i \longleftarrow 1$ to n
3. if $F \cup\left\{e_{i}\right\} \in \mathcal{F}$
4. \quad then $F \longleftarrow F \cup\left\{e_{i}\right\}$
5. return F

Claim The set F produced by the above algorithm is Gale-optimal.
Proof of Claim Suppose not. Then there exists a $G \in \mathcal{F}$ such that the conditions claimed in the lemma do not hold. Let both F and G be ordered as per the relation on E. Let $k=\min \left[j: g_{j}>f_{j}\right]$. Just before the greedy algorithm selected the element f_{j}, the subset of elements from F already selected is $\hat{F}=\left\{f_{i}: i<j\right\} \in \mathcal{F}$. But $\hat{G}=\left\{g_{i}: i \leq j\right\} \in \mathcal{F}$. $|\hat{G}|>|\hat{F}|$ and since $g_{j}>f_{j}$ and $g_{i}>g_{j}$ for all $i<j$, each element of \hat{G} is "greater" than f_{j}. Moreover, since M is a matroid, $\exists g \in \hat{G}-\hat{F}$ such that $\hat{F} \cup\{g\} \in \mathcal{F}$. This contradicts the fact that F was selected by the greedy algorithm. This also completes the proof of the lemma.

Lemma 4 Let $M=[E, F]$ be an independence system for which the greedy algorithm solves the problem: $\max _{F \in \mathcal{F}} \sum_{e \in F} w(e)$ for all w. Then, M is a matroid.

Proof Let F, G be two elements in \mathcal{F} and let $|G|>|F|=k$. Choose w as follows:

$$
w(e)=\left\{\begin{array}{cc}
k+2 & e \in F \\
k+1 & e \in G-F \\
0 & e \notin G \cup F
\end{array}\right.
$$

The greedy algorithm will first select all elements of F. But since

$$
\begin{aligned}
\sum_{e \in G} w(e) & =(k+2)(|G \cap F|+(k+1)|G-F| \\
& \geq(k+1)^{2} \\
& >(k+2) k \\
& =\sum_{e \in F} w(e)
\end{aligned}
$$

Hence the algorithm must select at least one element $g \in(G-F)$ such that $F \cup\{g\} \in \mathcal{F}$. This shows that M is a matroid.

4.2.1 Matroid Union \& Partition

Theorem 5 (Nash-Williams) Let $M=[E, \mathcal{F}]$ be a matroid. Let \hat{E} be a set and $h: E \rightarrow \hat{E}$ be a mapping from E to \hat{E}. Let $h(F)=\cup_{e \in F} h(e)$. Let $\hat{A}=\{\hat{F}: \hat{F}=h(F)$ for some $F \in \mathcal{F}\}$. Then $\hat{M}=[\hat{E}, \hat{\mathcal{A}}]$ is a matroid.

Proof Let $\hat{F}=h(F) ; \hat{G}=h(G) ;|\hat{G}|>|\hat{F}| ; \hat{F}, \hat{G} \in \hat{A}$. Select F, G so that $|\hat{F}|=|F|$ and $|\hat{G}|=|G|$. This can be done since $\hat{e} \neq \hat{f} \Longrightarrow h^{-1}(\hat{e}) \neq$ $h^{-1}(\hat{f})$. Hence $|G|>|F|$. Hence $\exists p \in G-F$ such that $F \cup\{p\} \in \mathcal{F}$. Let $A=F \cap G ; B_{F}, B_{G}$ be such that $\left|B_{F}\right|=\left|B_{G}\right|$ and for each $f \in B_{F}$, $\exists g \in B_{G}$ with $h(f)=h(g)$. For each element q in $F-A-B_{F}$ and each element r in $G-A-B_{G}$, we have $h(q) \neq h(r)$. If $g \in G-A-B_{G}$, we are done. If $g \in B_{G}$, replace $f \in F$ with $h(f)=h(g)$ by g and this increases the set A. Please note that $h(F), h(G)$ are not altered by this. After a finite number of steps, we get a $g \in G-A-B_{G}$ and hence we are done.

Corollary 6 Let $M_{i}=\left[E, F_{i}\right] ; 1 \leq i \leq k$ be matroids. Let $M=\left[E, \mathcal{F}^{(1)}\right]$ where $\mathcal{F}^{(1)}=\left\{F: F=\cup F_{i}\right.$ for some collection $\left.F_{i} \in \mathcal{F}_{i}\right\}$. Then M is a matroid and this operation is called the union of matroids and we write $M=\cup M_{i}$.

Proof Let $E_{i} ; 1 \leq i \leq k$ be k copies of E. These are considered distinct sets for now. Let $M^{(2)}=\left[\cup E_{i}, \mathcal{F}^{(2)}\right]$ where $\mathcal{F}^{(2)}=\left\{F: F=\cup F_{i}\right.$ (with multiple copies of an element if it occurs many times) for some collection $\left.F_{i} \in \mathcal{F}_{i}\right\}$. The difference between a member of $\mathcal{F}^{(1)}$ and $\mathcal{F}^{(2)}$ is that the second may contains duplicate copies of an element while the first does not. It is very easy to show that $M^{(2)}$ is a matroid (sometimes referred to as disjoint union). Now let $h: \cup E_{i} \rightarrow E$ be the mapping that maps all copies of an element to the one copy in E. It is easy to see that $h\left(\mathcal{F}^{(2)}\right)=\mathcal{F}^{(1)}$. So the result follows from the above theorem.

But the above result does not provide for an oracle for the union given the oracles for individual matroids. This was done by J. Edmonds through an
algorithm for "Matroid Partition". This algorithm produces the sets F_{i} given an $F \in \mathcal{F}^{(1)}$ or shows that the given $F \notin \mathcal{F}^{(1)}$. We describe this work below:

Theorem 7 Let $M_{i} ; 1 \leq i \leq k$ and M be as above. A set F can be partitioned into sets $F_{i} \in \mathcal{F}_{i}$ (i.e. $F \in \mathcal{F}^{(1)}$) if and only if

$$
|A| \leq \sum_{i=1}^{k} r_{i}(A) \quad \forall A \subseteq F
$$

Proof It is easy to show that this is a necessary condition. To show that it is sufficient, we use an algorithm.

Definition 10 Let $F \subseteq A \subseteq E ; F \in \mathcal{F}$ where $M=[E, \mathcal{F}]$ is a matroid. The set $S \subseteq A$ defined by the relation

$$
S=F \cup\{e \in A: F \cup\{e\} \notin \mathcal{F}\}
$$

is called the span of F in A with respect to matroid M and is denoted by $T(F, A, M)$. Informally, it is the set F together with all elements in A that are dependent on F. This set can also be defined by the relation: It is the unique maximal (with respect to set inclusion) set satisfying the relations: (i) $F \subseteq S \subseteq A$ and $(i i) r(S)=r(F)=|F|$.

The algorithm uses the following "primitive operation": For an index i, a $F \in F_{i}$, and an element $e \in E-F$, check if $F \cup\{e\} \in F_{i}$ and if the answer is no find a circuit $C \subseteq F \cup\{e\}$ in matroid M_{i}.

4.2.2 Algorithm

Without loss, we assume that the set we want to partition is the set E itself. Start with any family $\left\{F_{i}\right\} ; i=1,2, \ldots, n$ of disjoint sets satisfying the relations $F_{i} \in \mathcal{F}_{i}$. Any number of these may be empty. Let $H=\cup F_{i}$. We say that H is partitionable with respect to $\left\{M_{i}\right\}$. Let $e \in E-H$. We show how to find a set $A \subseteq H \cup\{e\}$ satisfying the condition

$$
|A|>\sum_{i=1}^{k} r_{i}(A)
$$

in which case we can not partition $H \cup\{e\}$ or show how to partition $H \cup\{e\}$.

Phase I:

Start with $j=1 ; S_{0}=E$. If there is an index $i(j)$ such that $\left|F_{i(j)} \cap S_{j-1}\right|<$ $r_{i(j)}\left(S_{j-1}\right)$, set $S_{j}=T\left(F_{i(j)}, S_{j-1}, M_{i(j)}\right)$ and increase j by $1 . S_{j} \nsubseteq S_{j-1}$ since

$$
r_{i(j)}\left(S_{j}\right)=\left|F_{i(j)} \cap S_{j-1}\right|<r_{i(j)}\left(S_{j-1}\right)
$$

If such an index does not exist, we have come to the end of Phase I and we denote the last set by S_{n}. Clearly we have:

$$
\left|F_{i} \cap S_{n}\right|=r_{i}\left(S_{n}\right) \quad \forall i
$$

Since $\left\{F_{i}\right\}$ are disjoint, this implies

$$
\left|H \cap S_{n}\right|=\sum_{i=1}^{k} r_{i}\left(S_{n}\right)
$$

Now if $e \in S_{n}-H$, we have

$$
\begin{aligned}
A & =\left(H \cap S_{n}\right) \cup\{e\} \subseteq S_{n} \\
|A| & =\left|H \cap S_{n}\right|+1 \\
& >\sum_{i=1}^{k} r_{i}\left(S_{n}\right) \\
& \geq \sum_{i=1}^{k} r_{i}(A)
\end{aligned}
$$

indicating that the set $H \cup\{e\}$ is not partitionable.
On the other hand if $e \in E-\left(H \cup S_{n}\right)$, then we can partition $H \cup\{e\}$ and this is shown below:

Phase II:
Since the sets S_{j} are nested and since $e \notin S_{n}$ but $e \in S_{0}=E$, there is an index h such that $e \notin S_{h}$ but $e \in S_{j}$ for $0 \leq j<h$.

If $F_{i(h)} \cup\{e\} \in \mathcal{F}_{i(h)}$, then set $F_{i(h)} \longleftarrow F_{i(h)} \cup\{e\}$ and we are done.
If not, there is a circuit $C \subseteq F_{i(h)} \cup\{e\}$ in matroid $M_{i(h)}$.
Claim: $C \nsubseteq S_{h-1}$
Proof: Since $\left[S_{h}=T\left(F_{i(h)}, S_{h-1}, M_{i(h)}\right)\right.$], if $C \subseteq S_{h-1}$, then $e \in C$ would imply that $e \in S_{h}$. This contradicts our assumption that $e \notin S_{h}$.

Let m be the smallest index such that $C \nsubseteq S_{m}$. Note that $0<m<h$.
Let $e^{\prime} \in C-S_{m}$. Then $\left\{F_{i(h)}-\left\{e^{\prime}\right\}\right\} \cup\{e\} \in \mathcal{F}_{i(h)}$. Replacing $F_{i(h)}$ by

$$
\begin{aligned}
F_{i(h)}^{\prime} & =\left\{F_{i(h)}-\left\{e^{\prime}\right\}\right\} \cup\{e\} \\
F_{i}^{\prime} & =F_{i} ; i \neq i(h)
\end{aligned}
$$

we have taken care of the element e but now have to take care of the element e^{\prime}. We know that $e^{\prime} \notin S_{m}$ and that $e^{\prime} \in S_{j} ; 0 \leq j<m$.

The most important observation here is the following: If we did Phase I with $\left\{H-e^{\prime}\right\} \cup\{e\}$ instead of H, the sequence $\left[\left(F_{i(1)}^{\prime}, S_{1}\right), \ldots,\left(F_{i(m)}^{\prime}, S_{m}\right)\right]$ is the same as the sequence $\left[\left(F_{i(1)}, S_{1}\right), \ldots,\left(F_{i(m)}, S_{m}\right)\right]$. Since $m<h$, this process must terminate in less than h steps at which time we can include the element that is in place of e at that step.

This completes the description of the algorithm and the proof of the theorem. Using this algorithm we can also prove the following corollary to Nash-Williams theorem.

Corollary 8 Let $M_{i}=\left[E, \mathcal{F}_{i}\right] ; 1 \leq i \leq k$ be matroids. Let $M=[E, \mathcal{F}]$ where $\mathcal{F}^{(1)}=\left\{F: F=\cup F_{i}\right.$ for some collection $\left.F_{i} \in \mathcal{F}_{i}\right\}$. Then M is a matroid and this operation is called the union of matroids and we write $M=\cup M_{i}$.

Proof We will use the definition MI. 2 to do this. It is easy to verify that $[E, \mathcal{F}]$ is an independence system. Let H be any member of \mathcal{F}. Starting with this H by doing a Phase I of the algorithm we get a S_{n} such that

$$
\left|H \cap S_{n}\right|=\sum_{i=1}^{k} r_{i}\left(S_{n}\right)
$$

Moreover, we showed, in the above discussion, that for any $e \in S_{n}-H$, $H \cup\{e\}$ is not partitionable. Thus H is a maximal partitionable subset of $H \cup S_{n}$. To show that it is a maximum cardinality partitionable subset of $H \cup S_{n}$, let H^{\prime} be any other partitionable subset of $H \cup S_{n}$. Since $H^{\prime} \subseteq$ $H \cup S_{n}$, it follows that

$$
\left|H^{\prime}-S_{n}\right| \leq\left|H-S_{n}\right|
$$

Since H^{\prime} is partitionable, from the "only if" part of the theorem above, we have

$$
\begin{aligned}
\left|H^{\prime} \cap S_{n}\right| & \leq \sum_{i=1}^{k} r_{i}\left(\left|H^{\prime} \cap S_{n}\right|\right) \\
& \leq \sum_{i=1}^{k} r_{i}\left(S_{n}\right) \\
& =\left|H \cap S_{n}\right|
\end{aligned}
$$

Adding the two we get the desired result that $\left|H^{\prime}\right| \leq|H|$. Now let A be any subset of E. Suppose that the above H is any maximal partitionable subset of A. Phase II of the algorithm shows that for any $e \in E-(H \cup$ $\left.S_{n}\right), H \cup\{e\}$ is partitionable. Since we assumed that H is a maximal partitionable subset of A, it follows that $A \subseteq H \cup S_{n}$. Since H is a maximum cardinality partitionable subset of $H \cup S_{n}$, it is also a maximum cardinality partitionable subset of A. Hence M is a matroid. This also gives the method of constructing "the oracle' for M given such for each M_{i}.

4.3 Matroid Intersection:

We now take up another optimization problem in matroids.
Problem Given two matroids $M_{1}=\left[E, \mathcal{F}_{1}\right]$ and $M_{2}=\left[E, \mathcal{F}_{2}\right]$ on the same ground set E and weights $w(e)$ for each element $e \in E$, we want to solve the problem

$$
\max _{F \in \mathcal{F}_{1} \cap \mathcal{F}_{2}}\left[\sum_{e \in F} w(e)\right.
$$

If $w(e) \equiv 1$ for all $e \in E$, this problem is known as cardinality version of the intersection problem. This version can be solved by using the partition algorithm>

Suppose $F \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$. Then $E-F$ contains a basis B_{2}^{*} of M_{2}^{*} the dual of M_{2}. Hence the set $F \cup B_{2}^{*}$ is partitionable with respect to matroids M_{1} and M_{2}^{*}. Conversely, if A is a partitionable set of maximum size with respect to these two matroids and is partitioned so that $A=F_{1} \cup F_{2}^{*}$, we may assume that F_{2}^{*} is a basis of M_{2}^{*} and $F_{1} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}$.

But there is a direct algorithm for the intersection problem which works for arbitrary weights.

