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Blocking Systems

1.1 Examples

I Given a (directed) network G = [N, A] and capacities c¢; ; on arc
(4,7), V (i,7) € A, find a (directed) path P* from a specifed node s
to another specified node ¢ > ming; jjep« ¢;; = maxp ming jyep C; j-
Such a problem is known as an instance of the bottleneck problem.

IT Another instance is called the bottleneck assignment problem in which
the minimum is over the cells selected in an assignment and the max-
imum is over all feasible assignments. This problem is useful in the
context of assembly lines.

We now discuss the structure of these problems and this is the area of
blocking systems.

Definition 1 A family P, of subsets of a finite set E that satisfies the
relation: P € P, Q CP = Q ¢ P, is called a clutter on E.

Definition 2 Let P and K be clutters on a finite set E satsifying the prop-
erty:

V E° C E exactly one of the following is true:

(i)3PeP > PCE®

(i) 3K e K> K C (E — EY).

Then we call the triple [E, P, K| a blocking system. Note that in this
case the triple [E, K, P] is a blocking system. Each of P and K are said to
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be the blocker of the other. The word “the” in the above will be shown to
be valid later.

Lemma 1 If [E,P,K] is a blocking system then PNK # ¢V P € P and
V K € K. Conversely, if P and K are clutters on E satisfying this relation
then both (i) and (ii) above can not be true.

Proof: Let [E,P,K] be a blocking system. If 3 P and K > PN K = ¢,
then taking E® = P violates the exactly one statement. The converse is
clear.

Theorem 2 Let P be a clutter on E. 3 a unique clutter K on E > [E, P, K]
is a blocking system. It is this that justifies the word “the” in the above.

Proof: First we construct a clutter K that renders [E, P, K] a blocking
system. For this let F =[S C E: SNP # ¢ V P € P|. Note that
F#¢. Lt K=[KeF:K cK= K ¢F]. Hnce, PN K # ¢
V P e PandV K € K. Thus both (i) and (ii) can not be true for this
pair. Clearly K is a clutter on E. Suppose for E° C E, (i) is not true.
Then V P € P, (E — E°) N P # ¢ and hence (E — E°) € F and hence
JKeK>KC (E—E% . Hence [E,P,K] is a blocking system.

Now we show that if 3 K’ > [E,P,K']] is also a blocking system then
K = K'. Suppose not; 3 K € K — K’. Consider the partition (F— K, K). (ii)
is satisfied with respect to [E, P, K] and hence 3no P € P35 P C (E—K).
Hence (i) is not satisfied for this partition for both systems and hence (ii)
is for both. Hence 3 K’ C K 5 K’ €K’. Recall K ¢ K and hence K’ # K.
Now consider the partition (E — K’,K’). Since (ii) is satisfied for this
partition for the system [E,P,K’] 3no P C (E — K’) and hence using the
system [E,P,K] 3 K C K’ > K” €K. This is a contradiction to the fact
that K is a clutter.

Theorem 3 Let [E,P,K] be a blocking system and let f : E—— R be a

function on E. Then:

PR = R n )

Conversely, if P and K are clutters satisfying this relation for all 0/1valued
f, then [E,P,K] is a blocking system.

Proof: If [E, P, K] is a blocking system, since PNK # ¢V P € P,VK € K
, it is easy to verify that:

Héi}rjlf(e) < f(é) <max f(e)VPeP;VK € K

where ¢ € PN K. Hence:

i < mi .
e e = v ©
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Since P and P € P have finitely many elements, let

max pep Mineep f(€) = mineep- f(e) = f(eA*)-

Define EC = [e € E : f(e) > f(e*)] and E° = [e € E : f(e) > f(e*)].
Because of the above equation, 3 P € P > P C E° (say P*) and hence
no K C (E — E). Also by the above 3 no P ¢ E° and hence 3 K* C
(E — E"). The equation in the theorem holds for this K* and P*. To show
the converse, let E0 C E. Define f as follows:

1 eekE"°
f(e){o 6¢E0
If 3 P C E°, then:

e nip f(e) = 1= iy mex (o)
implying KNEY # ¢V K € K. Hence 3no K € K> K C (E — EY). If 3
no P C EY then maxpep mineep f(e) = 0 = minge x maxecx f(e). This
in turn implies that 3 K C (E — EY). Hence the converse and hence the
theorem.O

1.2 Max-Flow (Min-Cut) Equality

Let A be the incidence matrix of elements of £ (column) and members of
P. Thus,
1 ecP

a(P,e) —{ 0 c¢P
Consider the LP:

max ZPGP y(P)
y=>0

Yopepa(Pe)y(P) <w(e)Vec€ E.

w(e) is to be thought of as the capacity of the element e. The special case
where E represents the edges (arcs) of an undirected (directed) network and
P represents the set of all paths (directed paths) from a node s to a node
t should be used for purposes of focusing on concrete examples. In such a
case K represents the cuts separating s and t.

A related problem is: mingex Y .cx w(e). For the special case alluded
to above the value of both problems are equal ¥V w > 0 (this follows from
LP duality); further, if w is integral, then the LP has optimal solutions
that are (componentwise) integral.

A blocking system is said to satisfy maz-flow-min-cut equality if the two
values are equal for all w > 0. Further, if the LP has integral solutions for
all nonnegative integral w then the system is said to satisfy this equality
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strongly. If we interchange the roles of P and KC we get: min-path problem
(the LP) and min-path equality. Not all blocking systems satisfy either of
these two. For example consdier: £ = {1,2,...,(2k — 1)} and P = {P C
E : |P| =k} = K. This example occurs in multiperson game theory and is
called “magjority game”. We will show that this example does not satisfy
these equalities by showing that they do not satisfy an inequality called the
length-undth inequality described below.

Let [E,P, K] be a blocking system and let [: E +— Ry and w: E
R be two functions defined on E. Let

A = min l(e)
PeP
ecP
and
Q = min w(e)
KeK
eeK

Lenght-Width inequality is said to hold for a blocking system [E, P, K]
if,

AQ <> cplle)w(e) VI, we Ry. Note that this inequality is symmet-
ric with respect to the role of the two clutters where as the previous two
were not (although the two equalities themselves were). Not all blocking
systems satisfy this inequality. However, we have the following interesting
theorem.

Theorem 4 Let [E, P, K] be a blocking system. Then either all of the fol-

lowing are none of them holds:

(i)max-flow-min-cut for the ordered pair [P, K]
(il)max-flow-min-cut for the ordered pair [K, P]
(iii)length-width inequality for the unordered pair {P, K'}.
Proof: It suffices to show that (i)<=(iii).
==:Let L(P) =) .pl(e) and y* be an optimal solution to the LP:

max ZPep y(P)
Yy > 0

> pep (P e)y(P) <w(e) Ve € B

)
AQ=A. ZPGPy (P) <> pepy"(P).L(P)
=2 pepl¥ (P)e Xecp (e)] = X pep V™ (P) Yocep l(e)a(P, e)]
=2 ecr )X pep ¥ (P)a(Pe)] < 3 g l(e).wle)
<=: Consider the dual of the LP above. It can be written as:
miny . pw(e)z(e)
x>0
Yoecpa(Pe)r(e) >1V PeP
Let its optimal solution be I*(e) > 0. The constraints imply that L*(P) =

Yecrl®(e) > 1V P € P. Since Q represents the optimal value among
integral solutions to this LP and using LP duality we get:
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If strict inequality holds, letting:
D DD NUCES
PcPecP

we get a violation of length-width inequality for w and [*. Hence the
theorem.O
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Blocking and Antiblocking
Polyhedra

Much of this is based on the pioneering work of D.R.Fulkerson. It is
mainly concerned with the well known set packing and set covering problems
stated below for a given 0/1 matrix A and an integral vector w.:

Set Packing Problem:

max ely
Aly <w
y > 0, integer

Set Covering Problem:

min ely
Aly > w
y >0, integer]

For both problems, we may assume without loss that we do not have two
rows A; and Ay > Aj; > Aj.. We consider the analysis of the set packing
case and its continuous version first.

2.1 Blocking Polyhedra

The LP dual of the above packing problem is:

min wtx

Axr >e; >0
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The set of feasible solutions to this LP is an unbounded polyhedron and will
be denoted by B. B is the vector sum of the convex hull of its extreme points
{b1,6?,...,b"} and the nonnegative orthant R . All this fancy statement
means is that the extreme rays are the unit vectors. That these are the
extreme rays follows from the fact that x > 0 =— Az > 0 since A > 0.

Definition 3 The i row, A; of A is said to be inessential if 3 :
A>05 A0 =D NAGY N=1
i #i

This is equivalent to the it" constraint in the definition of B being redun-
dant.

Definition 4 A is proper if 3 no inessential rows.

Definition 5 The blocker B of B is defined by the relation:
B={y:y>0y'z>1VxecB}
The following are boring but useful results.

Theorem 5 Let a be a proper m X n matriz whose rows are {a*;1 < i <
m}. Let B, B, and {b*;1 < k < r} be defined as above. Let B be ar x n
matriz with By, = b*. Let A be defined by the relation:

A={y:y>0;By>e}
Then:
(i)B=A
(ii) B is proper and the extreme points of A are the rows of A
(iii) A =B where
A=[z:2>02'y >1Vye A

Proof: (i) AcB:Lety € Aand x € B. Since z € B,3\; >0and d > 0
satisfying the relations:

x:i)\iBi_er;Z)\i =1
1=1

Now it is a simple matter to verify that z'y > 1 and hence y € B.
BcCA:
yeB=y>0ylz>1VzehB

y
y>0y'B;. >1,1<i<r
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.
ye A
(ii) B is proper: Suppose:

By > iaiBi. =y a4 > O;Zai =1
i—2 i

Let By, = y+ 2,z > 0. If 2z = 0, then B; is not an extreme point of
B.If z # 0, then y = [(y + 32) + (y + 32)] and these are points in B
contradicting the extreme point nature of By . Hence B is proper.

Now we show that the extreme points of A are the rows of the matrix A.
Let C =convex hull of {a',a?, ...,a™}. We wish to show that A =C + Ry,

ADCH+RY :Let z € C+ Ry

r =" aat 4+ zya; > 0;) o = 1;2 > 0. It is easy to verify that
Bx > e and hence z € A.

A=C+Ryp:Ifnot, 30 € R} and A € R2br > AV z € C+ Ry and
by < X for some y € A by separation theorem in convezity. This in turn
implies that b > 0 and hence A > 0. Hence % € B and therefore bTy > 1
and this is a contradiction and hence A =C + R’. Thus, the extreme
points of A are among the rows of A. Now we show that each row of A
is an extreme point of A. Suppose A; is not. Then A; = %(m + y) where
z=>" oA +q# A andy =" B;A; +p # Ay Hence oy +3; < 2.
Hence

Ar = 5[50 (i + B) A+ (p+q)l-

> 3o (725 ) As. where ;= (o + B;). This is a contradiction to the
hypothesis that A is proper.

A=B:By (i) A={r:2y>1VyecBl.xeB=ay>1Vych
Hence B C A. Since by (ii), extreme points of A are the rows of A, z €
A= x> 0; Az > e. Hence = € B. Hence the last part of the theorem.O

Theorem 6 Let A and B be nonnegative, proper matrices. Let A and B
be defined by:
B=[z:z>0;Az > €

A=[y:y>0;By > e

Let A and B be defined as before. Let one of (i)A = B or (ii)B = A be true.
Then, the other is also true and extreme points of A are the rows of B and
those of B are the rows of A.

Proof: Suppose (ii) is true. Let C be the matrix of extreme points of B
and let C = [y : y > 0;Cy > e]. Since C is B by theorem 1, C = A. But
by theorem 1, &= B. Hence (i) is true. Also by theorem 1, extreme points
of C are the rows of A. Hence the extreme points of A are the rows of A.
Since C = A, and B is proper and so is C; hence B =C.

Pairs of matrices (A4, B) that satisfy the above are called a blocking pair.
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Definition 6 Max-min Equality holds for the ordered pair of matrices
(A, B) <= min; Bj w = [maxely : Aly <w;y > 0]V w > 0.

Definition 7 Min-min Inequality (also known as length-width inequality )
holds for the unordered pair { A, B} of matrices <= l.w > [min; A; 1].[min; B; w| ¥ 1 >
0, Vw > 0.

Theorem 7 Maz-min equality holds for the ordered pair of matrices (A, B)
iff it is a blocking pair; hence max-min equality for the pair (A, B) holds iff
it holds for the pair (B, A).

Theorem 8 A pair of proper matrices (A, B) is a blocking pair iff (i)A; Bj. >
1V i,j; and (i)min-min inequality holds for this pair.

Proof:(3 & 4): (a) Let A and B be a blocking pair of matrices. Then:

[maxely : y-0; A'y < w] = [minw'z : z > 0; Az > €]

= mingepwlz = min; B; .w

Thus, max-min equality holds for this pair.

(b)Let:

A = min A4; | = miny’l
7 yeA
and
Q = min Bj w = minz'w
J zeB
If either of these is zero, length width inequality follows trivially. If neither
is zero, then we have:

y(l/N) > 1V y € Aand z(w/Q) > 1V 2 € B. Hence, I/ € A and
z/Q € B=A. Hence (I/\)(w/Q) > 1 and hecne length-width inequality
holds.

(c)Let A and B be a pair of proper matrices that satisfy the length width
inequality and condition: A; B;, > 1V i,j . Let B, A,B and A be defined
as before. Then by theorem 1,

B =convex hull of {4, A3, ..., A, } + R" and

A =convex hull of {By, By, ..., B, } + R

If € Aand y € B, by the hypothesis 2ty > 1. Thus, A C B. We wish to
show that B C A. This is the same as showing b € B, y € A = bly > 1.
Apply length width inequality to b and y :

bly > [min B; y][min A; b] > 1
7 7.

Hence theorem 4.

(c) Let A and B be proper matrices satisfying max-min equality. We
wish to show they are a blocking pair. We use the above proof. Let I be
defined as before. If By, ¢ B, 3 w, « satisfying the relations:

Biw<a<uwzVzeB
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by separating plane theorem. By the nature of B (unit vectors are extreme
rays) w > 0 and hence a > 0. But duality and max-min equality imply:

min,cp w'z = [max ey :y > 0; Ay < w] = min; B; w

and this is a contradiction to the above. Hence B; € B for 1 < j <r.
Thus, A; B;. > 1V 4,j. Now we will show that min-min inequality holds
and hence the theorem.

Let A = min; 4; [, and = min; B; w. By max-min equality, 3

y? 3 Aly® <wiy® > 05e'y’ = Q
Hence:

AQ =AY =AY wd <D (Ay? = (O Ayl < w'l

Hence the min-min inequality and the theorem.

Discussion:

The most interesting case is when the matrices are 0/1. The assumption
that they be proper makes the rows correspond to the incidence vectors of
the members of a clutter. If A is the incidence matriz of a clutter, then B,
the incidence matriz of the blocking clutter is part of the blocking matriz
B. In general, B may have additional rows. There are, however, examples
in which B = B. A.Lehman has shown that these are precisely those for
which one of min-min inequality or maz-min equality holds (in which case

all of them hold).

Definition 8 Let A be the incidence matriz of a clutter. We say that max-
min equality holds strongly for the ordered pair (A, B) if the maz-min
equality holds for this pair and the LP:

max ey
Aly <wyy >0

has integral optimal solutions for all nonnegative integral w.

Theorem 9 A necessary (but not sufficent) condition for max-min equality
to hold strongly for the pair (A, B) described above is that B be the blocker
of A and B be 0/1.

Proof:If B is not 0/1, there is a nonintegral extreme point x of 5. Let x1
be fractional. Since x is an extreme point, there is a system of n equations
that define x uniquely. Let these be :

Yagr;=11<i<r
2 =0r+1<j<n

Let € = min[max, y1<j<n T, maxi<i<»(3; aijz; — 1)}, where the minimum
is over all other extreme points of B. It is easy to see that ¢ > 0. Let
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M= [%1 +1. Let w=1¢e; + M[Z?:T_H ej+ > i_y Ai]. Clearly w > 0 and
integral. Also,
wle =z1 + Mr < Mr—l—Megwty

for any other extreme point y of B. Hence the result.0
The following example shows that this condition is not sufficent.

Counter-example: (T.C.Hu):
Two Commodity Packing problem:

1 110 0 0
6 1 0 01 1 0
A=Q"= 01 01 01
0 01 0 11
and its blocker B :
[1 1 0 0 0 1]
1 01 0 10
01 1100
B=]100 0111
1 0 01 0 O
01 0 0 10
_0 01 0 0 I

Given a 0/1 matriz A its blocker may or may not be 0/1. Even when it
is 0/1, strong maz-min equality may hold for neither, or one or both of the
systems under consideration. No further characterization exists for any of
these cases. This is in stark contrast with the case in antiblocking systems
as we will show next.

2.2 Antiblocking Polyhedra

We now consider covering problems:

min ely
Aly > w;y >0

The dual of this LP is:
max wtx

Ax <e;x >0

Let the set of feasible solutions to this dual be denoted by C. C is bounded
iff A has a positive entry in each column and we will assume that this is
the case from now on. If we let the extreme points of C be B; ;1 <i <r
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then C is their convex hull. i*" row of A is inessential if the corrsponding
constraint is redundant; i.e. if:

30420;204]‘ :1:>AZ SZO&]‘AJ'.
J#i j#i

The antiblocker @, of C is defined by the relation:
C=ly:y'x<1Vaxel.
More boring but useful theorems:

Theorem 10 Let A be nonnegative matriz with no zero columns and let
C and & be defined as above. Let the extreme points of C be {b',b?,...,b"}.
Let B be defined by B;, = b'. Then, B > 0, has no zero columns and if
D=[y:y>0;By<e] thenD =0 and D =C.

Proof: Clearly B > 0. Since there are no zero columns in A, the largest
element 1; in the i*” columnof A is positive. Hence one of the rows of B is
the vector e;/ ;. Hence no column of B is the zero vector.

DC@:LetyeDandzeC. Sincex =Y a;b?, 2ty < 1. Hence y € &

& C D: Trivial.

D =C: Clearly C C D. Suppose z € D —C. Hence 3 A;, > A, > 1. But
A; € @and hence A; € D. But z € D is a contradiction to this. Hence the
result.O

The following pair is an antiblocking pair:

0 0 0

011 1 0 0
A=|1 0 1 B=|0 1 0
110 0 0 1
1 1 1

2 2 2

A has no inessential rows; only the first row of B is inessential. If we
start with B or its essential rows, then we get as its antiblocker not only
the rows of A but also the vectors 0,¢e;;1 < ¢ < 3. Notice that if these
are appended to the rows of A then these would be inessential rows. Also,
these are projections of the rows of A. This is not a coincidence as shown
by:

Theorem 11 Let A be a nonnegative matriz and let C be defined as before.
Let b,bt,...,b% be points of C3b < c =i a;ba > 0;, o = 1. Also,
suppose b is an extreme point of C. Then, b is a projection of b for some i.

Proof:If b = ¢, then we are done. If b = 0, then also the result is trivial.
Hence without loss, let: b = (81, Bs, ..., 01, 0,0, ...,0) with 3, > 0for 1 <i <
kand ¢ = (c1, ¢, ..., ¢y ). Since b is an extreme point of C, 3 a k x k submatrix
E of A > the system: Ex = e has a unique solution z = (84, s, ..., B%)-
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However, Ey > Ex = e where y = (cy,c¢a,...,¢;). But ¢ € C and hence
Ey < e and hence Ey = e. Hence y = x and hence b is a projection of one
of the b*.0

Definition 9 A pair of matrices A and B >the polyhedra C and D defined
as above are an antiblocking pair are themselves an antiblocking pair of
matrices.

Theorem 12 Let A be an m X n incidence matrix of a clutter of subsets
S 1 < i <m of the set {12,...,n}. Suppose a has no zero columns. Let B
be its antiblocker and let C and D be defined as before. Then, the extreme
points of the type discussed in theorem 7 are precisely the rows of A together
with all incidence vectors of subsets of the sets S* (which correspond to
projections of rows of A).

Theorem 13 Let A, B be an antiblocking pair of matrices and let A,B
be obtained by deleting i*" from A and B respectively. These form an an-
tiblocking pair.

2.3 Relation Between Blocking and
Antiblocking Polyhedra

Lemma 14 Let E be a square nonsingular 0/1 matriz. Suppose that the
system: Ex = e has a (unique) solution x > 0> elx > 1. Let E = J — E,
where J is the matriz all of whose elements are 1 (of the same size as E).
Then, the system Ey = e also has a unique solution y > 0> ety > 1.

Theorem 15 Let A be as in theorem 9 with no column consisting only
of ones. Let B be the r x n blocking matriz of A and let p; = e'Bj.. Let

A = J — A with J being the same size matriz all of whose entries are 1.
Then, the antiblocker of A is the matriz whose rows are:

Bj/(p;j—1);1<j<rande;l<i<n.

2.4 Antiblocking Polyhedra Generated by
0/1 Matrices

Definition 10 Let A be 0/1 and let B be its antiblocker. We say that min-
max equality holds strongly for the ordered pair (A, B) if min-maz equality
holds for this pair of matrices and the LP: [minely : Aly > w;y > 0]
has integral optimal solutions for all integral w for which it has optimal
solutions.
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Lemma 16 Let A be 0/1 and let B be its antiblocker. A necessary condi-
tion for the min-maz equality to hold strongly for the ordered pair (A, B)
is that B be also 0/1. (Here we only look at essential rows of B).

Proof:If a row of B is not 0/1 then it is not integral and conversely. Let
x be an extreme point of C 5 z1 is fractional. Let the equations defining «
be:

Zaijl‘j:l;lfif’l’ (21)
z;=0r+1<j5<n (2.2)
Let:

T=lj:r+1<j<nje; <Y A
i=1

€ = min[lrgfxécr(l - Zaijxj)]
- J

where the min is over all extrem points not satisfying 2.1 and

€2 = minfz;]

where the min is over all extreme points not covered in the above and
which do not satisfy (**). Note that these two conditions cover all other
extreme points except x. Also both these quantities are positive. Let m =
[(L—2,)/ex] M = max[m, [(1—a1)/er]] and w = e3 + M(T]_, A;) —
m(3_ e €j) > 0 and integral. Also:

wtx = Mr + 27 and wty < Mr — Me; +1 < Mr + x; for all extreme
points of the kind used in defining ¢, . wly < Mr+1—mey < Mr + x; for
all extreme points used in defining e5. Hence x is optimal and the value is
fractional as desired. Hence the lemma.O

Surprisingly, this condition also turns out to be sufficient. Contrast this
with that in blocking polyhedra.

Theorem 17 Let A be 0/1 with no zero columns and let B be its an-
tiblocker. Min-maz equality holds strongly for the ordered pair (A, B) iff
each essential row of B is 0/1. Hence, if the min-max equality holds for the
ordered pair (A, B) then it also holds for the ordered pair (B, A). This last
result is known as the pluperfect graph theorem.

Proof:We need only prove the sufficiency. Suppose A and B are 0/1 and
are an antiblocking pair. Clearly min-max equality holds — we are only
trying ot show that it holds strongly. We will produce an integer optimal
solution ot the LP: [min e’y : y > 0; A’y > w] for integral w. We do this
by an algorithm. Using the fact that essential rows of B are the extreme
points of C and hence these are 0/1 and using LP duality we have:

e'y* = maxw'B;, =
J
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and since B is 0/1, Q is an integer. Our process is an induction on the
value of €. Clearly we may suppose that w > 0. If w is not > 0, then
we have the same LP on a column submatrix for which the antiblocker is
the corresponding column submatrix of B and the same arguement can be
repeated. If w = 0, then 2 = 0 and y* = 0 is the required integer solution
in the latter case. Hence we will assume without loss that w > 0 and hence
Q > 0. We start with y = 0 and “build” y* step by step. Let:

=0 1<j<k
L. ==
wBJ-{<Q k+1<j<r

The system:

i =1 1<j<k
“’Bﬂ-{g1 E+1<j<r

has a nonnegative solution w/2. Hence 3 an extreme point, z, of the poly-
hedron:

= <7<
But each such extreme point of Q is also an extreme point of D and hence z
is a row of A or the projection of such a row. Let z be A; or its projection.
Increase y; by one and change w by the relation:
we? = wod — Al | Delete all columns of A and B that correspond
to nonpositive components in w™*. This yields A’, B’,w" > 0. The pair
(A’, B') is an antiblocking pair. Hence:

1>AiB; >2'Bj =1;1<j<k

¢

AlB; =1;1<j<k
A'B; =0/Lk+1<j<r.

¢

max(u)'B), = max(w' By, — ALB) =9~ 1

J J

We now repeat the process and in this manner build up an nonnegative
integer vector y >

Aly > w;ely =Q

This completes the proof of the theorem.O
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Remarks

1 We do not know the equivalent process for blocking systems. See re-
marks there.

2 If A is totally unimodular, it is clear that its antiblocker is 0/1 and
hence min-max equality holds for both the pairs(4, B) and (B, A).
Note that B may not be totally unimodular. See example dealing with
rigid circuit graphs.

3 There are examples where the strong min-max equality is trivial for
one order but not for the other; yet this theorem proves these results
are equivalent.

4 Let A be the incidence matrix of a clutter. Let B be the incidence
matrix of the antiblocker of A and let the strong min-max equality
hold for the pair (A, B). Then, A is the (clique-node) incidence matriz
of a family of maximal cliques of a graph G and B is the incidence
matrix of the family of (anticliques) independent sets (to nodes) or
equivalently the cliqgue node incidence matriz of the complement graph

G.

Proof:We construct the graph G as follows. The nodes of G correspond to
the columns of A. There is an edge (¢,7) in G <= A ;. A ; > 1. Such a graph
is called the intersection graph of the matriz A. By the previous results,
strong min-max equality <= B is 0/1 <= C has 0/1 extreme points. Note
that all 0/1 points of C are necessarily extreme. Let A be the clique-node
incidence matrix of this graph G. Let &= [z : z > 0; Az < ¢].

Claim: & = C.

Proof: For this we need to show that each inequality in one is implied by
the other set. Consider the inequality 2'A; < 1. Suppose T = [j : a;; =
1). This implies (i,7) is an edge of G if j € T. Hence, T is a subset of
some clique in G and the corresponding inequality in @ implies the above
inequality z!A4; < 1. This implies that ACC.

To show the converse, suppose C — & # ¢. Then, 3 an extreme point
29 of C, > 29 ¢ @\ (This is because both are bounded convex sets and one
is contained in the other.) This imples that 3 i > (2°)*A4; > 2 (since all
extreme points of C are 0/1). This implies that 2" has two components
in some clique equal to 1. But two nodes k and [ are in a clique only if
Ji 3 a;r = a;y = 1. In this case 20 violates the constriant (20)4; < 1
and hence a contradiction to 20 € C.

Hence B is an antiblocker not only of A but also of A. Thus both these
matrices contain all the essential extreme points of D = [y : y > 0; By < €.
thus, all the essential rows of A are contained in A and hence A is the
clique-node incidence matrix of G.O



xviii 2. Blocking and Antiblocking Polyhedra

2.5 Examples

I Permutations: Consider the system:

Z?:1$ij:131§j§n
Z?Zlazijzl;lgign
117”20

It is well known that the extreme points of the above system are the
incidence vectors of n X n permutations matrices viewed as vectors
in the space of appropriate dimension or their projections. If A is an
n! x n? matrix whose rows are the above incidence vectors, then the
extreme points of C = [z : Az < e;x > 0] are precisely the rows
of the constraint matrix of the system that we started with. Since,
this constraint matrix is totally unimodular, it follows that strong
min-max equality holds in this case. If we let the constraint matrix in
the above be B, strong min-max for (B, A) for 0/1 w is a well known
theorem due to Ko6nig;:

Theorem 18 A: Let G = [S,T; E| be an undirected bipartite graph. The
mazimum nunmber of arcs of G that are pariwise node disjoint (matchings)
equals the minimum number of nodes in an (S,T) disconnecting set of nodes
(node covers).

Mathematical Programming Interpretation:

Let B be the node edge incidence matrix of G. Consider the polyhedron
C = [z : Bz < e;x > 0]. The antiblocker A has as its rows the incidence
vectors of matchings. Since B is totally unimodular, A is 0/1. For 0/1 w,
consider the LP : [mine'y : y > 0; B'y > w]. Any 0/1 solution is a node
cover. Note

[minely : y > 0; By > w;y integral]

> [mine'y : y > 0; Bty > w]

= [maxw'z : x > 0; Bx < ¢

> [maxw'z : & > 0; Bz < e;x integral]

Hence, if the first and the last term are equal, then everything in between
is also equal to these. This in turn implies that this problem has integral
solution for 0/1 w (actually it satisfies strong min-max for all integral w).

Theorem 19 B: Let G be as in theorem A. Then the minimum number
of colours required in an edge colouring such that no two adjacent edges
receive the same color equals the maximum degree of a node.

Mathematical Programming Interpretation:

Consider the LP: [minely : y > 0; Aty > w|. For 0/1 w, any 0/1 solution is
a partition of the edges into matchings and hence a colouring. max; Bjw
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is the maximum degreee of a node in G. Thus, this is the strong min-max
for the pair (A, B).

II Chain Decomposition in a Partially Ordered Set:

Let A be the incidence matrix of all chains (rows) in a partially ordered
set of n elements. Then, B the antiblocker of A is the incidence matrix of
all antichains (mutually unrelated elements) of the partially ordered set.
To see this we note that 0/1 vectors of C = [z : Az < e;x > 0] are precisely
the incidence vectors of such antichains. Next we shall show that C has only
integral extreme points by using theorem due to Dilworth. Incidentally,
neither A nor B is even balanced (let alone t.u.).

Theorem 20 Mazximum number of mutually unrelated elements in a par-
tially ordered set (the maximum cardinality of an antichain) equals the
minimum number of chains in a chain decomposition (minimum number
of chains required to cover the elements).

This result is proved in network flows using max-flow-min-cut. It is equiv-
alent to the strong min-max equality for the ordered pair (A, B) for 0/1 w
with the above interpretation for the matrices. To show that it implies
strong min-max for all integral nonnegative w we use a process called repli-
cation which we describe algebraically below and then show the correspond-
ing changes in the partially ordered set.

Lemma 21 Consider the LP : [mine'y : A'y > w;y > 0] with wy; > 2 and
any 0/1 matriz A as shown below:

A:

cw =

em Ayt w1
0 A2ay_ ZQ? W

where €™yl € R™; 0,9 € R Al is m X p; A? isn x p; € R™;and the
LP: [mineé'y : y > 0; A'y > | with A as shown below:

~ em Al gt 1
A= 0 em A jg= §® ;o= w —1
0 0 A2 yt W

These two problems are equivalent.

Proof: Let (y!,9) be a feasible solution to the first problem above. {7! =
[(wy — 1) /wilyt; 5% = y' — gl;yT = §} yields a corresponding feasible
solution to the second with the same objective value. If the sarting solution
is integral, then y' # 0 and hence it is greater than some unit vector; say
e1. In this case letting {7 = eq;9% = y' — §';yT = §} yields an integral
solution to the second problem with the same value. To show the converse,
let y' = g% +7hy* = 9.0
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In the case of partially ordered set, this is equivalent to replicating an
element (making a clone whose relationship is the same as the original
element). This shows the results promised.

ITT Rigid Circuit Graphs (triangulated graphs or chordal graphs):

A graph is said to be rigid circuit if every circuit of length four or more
has a chord. (see figure). Clearly, node induced subgraphs of a rigid circuit
graph are also rigid circuit graphs. Let A be the clique node incidence
matrix of a rigid circuit graph G. The antiblocker B of A is the node
— independence set incidence matrix of G or equivalently the node-clique
incidence matrix of the complement graph G. There are rigid circuit graphs
for which A is not t.u.; for example:

100011 111000
010101 1 00100
A= 001110/ B= 010010
000111 0 010O01

There are two types of replications of nodes in a graph. In the first type,
we duplicate the vertex (meaning the clone is connected to all vertices that
the original is connected to) but do not join the original vertex to its clone.
In the second type we connect these two. The second type of replication
preserves rigid circuit property, but the first does not as in K3. However,
such a replication of the complement of a rigid circuit graph produces a
complement of a rigid circuit graph. Thus, if the strong min-max equality
holds for the pair (B, A) for 0/1 right hand sides then it also holds for all
integral right hand sides. This is Berge’s proof for strong min-max equality
for this pair of matrices for both orders. Fulkerson gives another proof that
sheds some light on the structure of A as well. It uses a result of Dirac.

Theorem 22 If G is a rigid circuit graph, then 3 a vertex which is sim-
plicial.

Definition 11 A vertex is simplicial if it together with its neighbours forms
a clique.

Actually a stronger result is proved through induction. But we need a
definition and a lemma first.

Definition 12 An articualtion set is a set of vertices in a graph whose
removal yields a disconnected graph. A minimal articulation set is one that
is an articulation set which is minimal in the set theoretic sense.

Lemma 23 Let G be a rigid circuit graph and let S be a minimal articu-
lation set. Then, the induced subgraph Gg is complete.
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Proof: Let the components when S is removed be I'y,T's,... etc. Every
node in S is connected to at least one node in each of T';; else S would not
be minimal. Let s € S, t € S. 3 a chain [s, kq, ko, ..., t] with k; € T,. Let
this be the shortest such chain. Similarly let [s,mq, ma, ..., t] with m; € I'y
be the shortest such chain. Now consider the cycle formed by their union.

The following chords are not present: (s, k;) : contradiction to the short-
ness of the first chain; (k;, k;) : same reason as above; (t,k;) : same rea-
son as above; (s,m;) : contradiction to the shortness of the second chain;
(mj, m,) : same reason as above; (t,m;) : same reason as above; (k;, m;) :
in two different components.

This circuit has a length at least four and hence must have a chord.
We have ruled out all possibilities except (s,t) and hence s and ¢ must be
connected by an edge. Hence the lemma.O

Theorem 24 Let G be a rigid circuit graph. There are two simplicial ver-
tices (assuming the number of vertices > 2); if G is not complete, then
these are monadjacent.

Proof: By induction on the number of vertices. If G is complete there is
nothing to prove. If s and ¢t are nonadjacent vertices in G, let S be the
minimal separator of s and ¢ (removal of S yields two components G4 and
Gp with s € G4 and t € Gg). The lemma shows that the induced subgraph
on S is complete. The graph if G 4.5 is complete then every vertex in A
is simplicial; if it is not, then there are two nonadjacent vertices in it that
are simplicial by induction hypothesis. Since Gg is complete, one of these
must be in A. Similar arguement shows that there is a simplicial vertex in
B and this proves the theorem.

P.Buneman and Gavril go further to prove a stronger result. This has
very useful applications in location theory and file organization.

Example:

Let T be a tree and 7 be a family of subtrees of T. Let G be a graph
fromed as follows: There is a node for each member of 7 and two of thse are
connected by an edge if they intersect. It is well known in this case that, if a
subfamily interscts pairwise, then they all intersect in a common point; such
a property is known in the literature as the Helly property which also holds
for a family convex sets € R? with any d + 1 of them intersecting (instead
of two). Using this it is very easy to show that G is a rigid circuit graph.
Buneman and Gavril showed the converse: every rigid circuit graph is
obtained in this manner and they showed how to produce the family of
trees.

Theorem 25 (Walter (72);Buneman (74); Gavril (74): Let G = [N; E]
be an undirected graph. The following statements are equivalent: (i) G is a
rigid circuit graph;(ii) G is the intersection graph of a family of subtrees
of a tree; (ii1)3 a tree T = [K, E] whose vertes set K corresponds to the



xxii 2. Blocking and Antiblocking Polyhedra

mazimal cliques of G > each of its induced subgraphs Tk, is connected (and
hence a subtree), where K; consists of those nodes of T that correspond to
mazimal cliques in G containing the node i (in G).

Proof: (iii) =(ii): Let (s,t) € E = {s,t} C A where A is some maximal
clique in G. Hence K; N Ky # ¢. Hence Tk, N Tk, # ¢. Thus, G is the
intersection graph of the family, {Tk, : ¢ € N}, of subtrees of T.

(il) =(i):

(i) =(iii): By induction on the number of nodes in G. The result is
trivial if G is complete; T is a single point. If G has several components
I'y,Ty,...,T', by induction 3 trees T; satisfying (iii) for each I';. Connecting
these trees toegther in any manner yields the required tree T. Hence we
assume G is connected and is not complete. Choose a simplicial vertex a
and let A = {a} U neighbours of a. Clearly A is a maximal clique. Let
U=lieA: (i,j)e E= je A;Y = A—U. Since G is connected
and not complete none of U, Y, N — A are empty. By induction, 3 a tree
Tn_y whose vertex set KN~V corresponds to maximal cliques in Gn_yr
such that for each vertex in ¢ € N — U, the set K fv ~Y induces a connected
graph (and hence a subtree) of Ty_y. Note that (the set of cliques in G)
K =KN"VU{A}—{Y}or K = KN"VU{A} depending on whether or not
{Y'} is a clique in the graph Gy_y. Let B be a maximal clique in Gy _¢
containing Y.

Case (a): B =Y. We obtain tree T from Tn_y by letting the vertex that
corresponded to B to now correspond to A.

Case (b): B # Y. We obtain tree T from the tree Ty_y by adding a new
node (which now corresponds to A) and connecting the new node to the
node representing B.

In either case K; = {A} Vi e U and K; = KJN_U Vj€ N — A, each of
which induces a subtree of T. We need only check the sets K,. for r € Y.
In case (a), K, = K¥N"Y U {A} — {B} which induces the same subtree
as KN~V since only names were changed. In case (b)K, = KN~V U {4},
which clearly induces a subtree of T'. Hence the theorem.O
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3
Perfect Graphs

We begin with an example due to C.E.Shannon who is the originator of
this idea. Consider a transmitter that can send five signals: a, b, ¢, d, and e.
Signal a might be received as p or ¢ and so on as shown in the graph R :

This yields the “confusion graph” G, with nodes a through e where two
nodes are connected if they can be confused at the receiving end. If G is the
cycle on five nodes, we can select at most two of the five original signals if no
two are to be confusing. In effect, we can choose a set only if it is independent
in G. Instead of single letters if we choose pairs, then we have a graph with
25 nodes and it is represented by G? whose vertices are (i, j) with i and j
from the original set of five letters. Two nodes in this graph are connected if
they are of the form [(7, §); (¢, k)] or [(4,7); (k, )] where j and k are connected
in G or if they are of the form [(¢,7); (k,1)] where ¢ and k are connected
in G and j and [ are connected in G. G* is defined in a similar manner.
The maximum size of an independent set in G is denoted by «(G). It is
easy to show that a(G*) > [a(G)]*. (Shannon) Capacity, ¢(G), of a graph
@G is defined by the relation: ¢(G) = supy, «(G*)F = limy,_, o, a(G¥)%. This
result follows from a result known in the literature as Fekete’s theorem
which asserts: If amyn < am + a, then <= — inf(<=). To prove this result
(See Polya and Szego ’s book on analysis) let o = inf(%*) and for € > 0,
let 4= < « + e For large n, we have n = gm +r with 0 < r < m,
an < qa;, + a,. Hence 4= < H“f? + B/n where 8 = maxj<j<m a;. Hence
the result follows. Using a,, = —log(a(G¥)) yields the result on ¢(G).

The problem of determining Shannon capacity of even simple graphs re-
mains unsolved. For instance, Lovasz solved the problem for the cycle
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on five nodes in 1979.We now need some definitions before we go on. Let
G = [N; E] be a simple undirected graph.

Definition 13 «a(G) = size of the largest independent set (or anticlique)
in G; this is called the (internal) stability number.

Definition 14 0(G) = minimum number of cliques that cover all the
nodes of G. This is sometimes called the clique covering number.

Definition 15 w(G) = size of the largest clique in G; sometimes called
the clique number of the graph.

Definition 16 v(G) = minimum number of independent sets required to
cover all nodes of G; this is often called the chromatic number.

It is easy to show that a(G) < 0(G) and w(G) < v(G) V G. A graph
is said to be a-perfect if V.S C N, a(Gs) = (Gs) where these are node-
induced subgraphs. It is said to be y-perfect if VS C N, w(Gg) = v(Gs). It
is easy to show that y-perfectness of G <= a-perfectness of G where G is
the complement graph of G. G is said to be perfect if it is both y-perfect and
a-perfect; equivalently both G and G are perfect. The (weak perfect graph
conjecture which is now the) perfect graph theorem asserts that one on
these implies the other. The only known minimal imperfect graphs are odd
cycles and their complements; the strong perfect graph conjecture asserts

that these are the only minimal imperfect graphs.

3.1 Mathematical Programming
Interpretation

Let A be the clique node incidence matrix and B be the clique node inci-
dence matrix of G (and hence the incidence matrix of independent sets or
anticliques of G). Then:

Y(G) = [mine'y : y > 0; B'y > e;y 0/1] = min e’y
y€Dy
a(G) = max; Bje
w(G) = max; A; e
6(G) = [mine'y : y > 0; Ay > e;y 0/1] = min 'y
yeCr
where C; and D; are the integral vectors in these convex bodies.

Lemma 26 v-perfectness is equivalent to the strong min-max equality for
0/1 w for the pair(B,A); a-perfectness is a similar result for the pair (B, A).
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Proof: We prove the second; the first is similar. Let G be a-perfect and
let Gs correspond the induced subgraph of the given 0/1 w. Then:

0(Gs) = [minely : y > 0; Aly > w;y 0/1]

> [mine'y : y > 0; Aly > w]

= [max w'z:x > 0; Az < €]

> max; Bj w = a(Gg).

a-perfectness of G implies all these quantities are equal for 0/1 w. Con-
versely, if strong min-max holds for 0/1 w for the pair(A, B) then:

0(Gs) = [mine'y : y > 0; A'y > w;y 0/1] = max; B; w = a(Gg).

Hence the lemma.O

3.2 Normal Product, Cartesian Sum and
Product of Graphs:

Let G = [N; E] and H = [V; A] be two undirected graphs. Their cartesian
sum denoted by G @ H is a graph whose node set is the cartesian product,
N x V, of the node sets of G and H; two nodes (z,7) and (k,I) of this
graph are connected iff i = k and (j,1) € A or if (i, k) € E and j = [. Their
cartesian product denoted by G x H also has the same node set as G ® H;
(¢,7) and (k,l) are connected iff (i,k) € E and (j,1) € A. Their normal
product denoted by G.H has the same node set as the previous two; the
set of edges here is the union of the edges of the two graphs G & H and
G x H. Note that all these operations are commutative. Similar definitions
hold for combining more than two graphs. The following results are easily
proved:

I w(G® H) = max|w(G),w(H)]

(

I v(G & H) = max[y(G),(H)]

IIT «(G® H) > a(G)a(H)

IV oG ® H) < min[|V]| (G), |N| a(H)]

GodH) <

~—

min[[V]6(G), [N|6(H)]

VI w(G.H) = w(G)w(H)
IX a(G.H) > o(G)o(H)
X 0(G.H) < 0(G)0(H)
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Hence [a(G)]F < o(GF) < 0(GF) < [0(G)]F. If a(G) = 6(G), then each
inequality in the previous statement is an equality. Hence, a-perfect graphs
¢(G) = a(G) = 0(G). In particular, when each signal is determined by its
modulation frequency, two signals can be confused iff the corresponding
intervals of frequency overlap (“linear noise”). In this case the confusion
graph G is an interval graph which is known to be perfect. Thus, longer
“words” do not improve the code. More on this problem later.

Strong min-max equality for all nonnegative integral w for the pair (B, A)
is called ~y-pluperfection and the same for the pair (A, B) is called a-
pluperfection. The theorem on antiblockers is the same as: y-pluperfection
<= a-pluperfection. Actually Fulkerson’s result applies to any 0/1 matrix
(although such matrices are related to graphs). It is easy to show that:

~v — pluper fection = v — per fection (3.1)
a — pluper fection = o — per fection (3.2)
pluper fection = per fection (3.3)

where the last thing on either side implies both of the previous ones. We
will show:
a — per fection = « — pluper fection (3.4)

which is sufficient to show that the statements on the right are equivalent.
This is done using the replication lemma due to L.Lovasz. There is another
implication of the perfect graph theorem which we take up now. It is this
that made Fulkerson doubt the validity of the result.

Theorem 27 The following statements are equivalent:
(i) Let A be a 0/1 matrix such that:

min ety
Aly > wyjy >0

has an integer optimum value V 0/1 w. Then, this LP has an inte-
ger (optimal solution) and hence an integer value for all nonnegative
integral w.

(ii) ~y-perfection = ~y-pluperfection.
(iii) ~y-perfection = perfection.

Proof:(i) = (ii): Let A be anticlique node incidence matrix of G

(il) = (iii): trivial.

(iii) = (i): Since (iii)<=>(iii’) where

(iii") a-perfection =perfection it suffices to show that (iii’) =-(i).

For this we need to show that A is the clique node incidence matrix of
some graph.



3.3 Replication xxVvii

Lemma 28 Let A be as in (i) above. Then A is the clique node incidence
matriz of the intersection graph ofA and this graph is a-perfect.

Proof: Let the rows of A be the incidence vectors of subsets of V. Corre-
sponding to any three rows Si, Sz, and S3 let S = U;-;(S;NS;); 1 <,j < 3.
Consider the incidence vector wg of S in the above LP. Letting y; = % for
1 <4 < 3 is a fesible solution with value % Hence the optimal value must
be 1 and hence S C T where T is the incidence vector of some row of A.
Now we use a result of P.C.Gilmore to complete the lemma.

3.3 Replication

Lemma 29 If G is a-perfect and we replicate some node v in G by Ry (we
do not connect v and its clone v') then the resulting graph G’ is a-perfect.

Proof: Case(i): v is in some maximum cardinality independent set in G.
Since the addition of one vertex can not increase any number by more than
one (it certainly does not decrease any number), it is clear that a(G’) =
a(G) + 1. Hence 6(G’) > a(G’) > a(G) + 1. But 8(G’) < 6(G) + 1 and
hence (G’) = 6(G)+1 = a(G’). Please note that this arguement applies to
any node induced subgraph containing both v and v’. Those that contain
only one of these or none are subgraphs of G and hence the result holds.
Hence G’ is a-perfect.

Case (ii): v is in no maximum cardinality independent set in G.

Let C;, 1 < i < k be the minimum clique cover of the nodes in G
with v € Cy. Note k = 6(G). Let H be the induced subgraph with node
set v U {U;£1C;} and H' be the induced subgraph on Uj.; C;. Since G is
a-perfect so are H and H'.

Claim: «(H') =0(H') =k — 1.

Proof:It is clear that cliques C; for 2 < i < k cover all nodes of H'and
hence 8(H') < k—1. If the number was any smaller then this together with
C4 would be a smaller cover for G. Hence the claim.O

Since v does not belong to any independent set of size k in G, it is not
in any such set in H either. Hence a(H) = a(H’) = k — 1 and since H
is a-perfect, 0(H) = a(H) = k — 1. Thus 3 cliques D; for 2 < j < k in
H (and hence in G) that cover all nodes of H. Let v € Dy. Hence G’ is
covered by (Cy — v+ '), Do, ..., Di. Hence (G’) = k = o(G’). The last
result is due to the fact that v is in no independent set of size k in G so
that replicating it using R; does not increase . Hence the perfect graph
theorem.O
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3.4 Solving the LP

Please note that while the LP has integer optimal solutions, these may not
be obtained by say the simplex method. Also, G may have small number of
nodes but a large number of cliques and anticliques. The second comment
poses a difficulty on solving even the continuous version of the LP.

References:

L.Lovasz: “On the Shannon Capacity of a Graph" , IEEE Trans. on
Information Theory, IT-25, #1, 1979, pp 1 — 7

A.Schrijver: A Comparison of the Delsarte and Lovasz Bounds, IEEE
Trans. on Information Theory, IT-25, #4, 1979, pp 425-429

Let

0"(G) = [mine'y : y > 0; Ay > e] = minyec e'y

= [maxe'z : x > 0; Az < €] = a*(G)

Since o*(G.H) = o*(G)a*(H) = 0*(G)0*(H) = 6*(G.H) and

0*(G) < 0(G) < a(G) < *(G) V G it should be clear that ¢(G) < a*(G)
with equality holding for perfect graphs in all of these.

3.4.1 Orthonormal Representation of Graphs

Given two vectors v € R™ and w € R the tensor product v = v#w €
R™" | is the vector with u; ; = v;w;. Simple algebra shows that (x#ty) (v#w) =
(z'v)(y'w). Let G = [N, E|] be a simple graph with |[N| = n. An orthono-
raml representation of G is a system of vectors v?, 1 < i < n, of unit
length (i.e. Hvz” = 1) satisfying the relation that if (i,5) ¢ E, v and 7
are orthogonal. The dimension of these vectors is not specified. Nothing is
said about the case when (¢,j) € E. Hence any graph has an orthonormal
representation; for example take all vectors to be pairwise orthogonal.

Lemma 30 If systems {u'};1 <i <n and {v7};1 < j < m are orthonor-
mal representations of G and H respectively, then the system {u'#v7};1 <
1 <n,1 <7 <mis an orthonormal representation of G.H.

Let the value of an orthonormal representation {u’}; 1 <4 < n be defined
by:

MiN ;|| o1 [MaX1<i<n ﬁ] The vector ¢ yielding the minimum in the
above is called the handle of this representation. Let 5(G) be the minimum
value over all representations of G (we will later show that this is achieved).
Call a representation that achieves this minimum value an optimal repre-
sentation.

Lemma 31 3(G.H) < 8(G)B(H).

Proof: Let u%;1 <4 < n and ©v7;1 < j < m be optimal representaions of
G and H respectively with handles ¢ and d. Then |c#d|| = 1 and hence
u'#v7 is an orthonormal representaion for G.H. Hence:
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B(G.H) < max; j [ razariaroryye)
1

= maxi,j[(c,,uli))z H(dzrvj)z}
=pB(G)B(H).0
FEquality will be shown to hold in this later on.

Lemma 32 «o(G) < 5(G).

Proof: Let u’;1 < i < n be an optimal orthonormal representation for G
with handle c. Let S C N be a maximum cardinality independent set in G
with s = |S| = a(G). This implies that u’ and u’/ are orthogonal for every
pair ¢ and j in S. Hence

l=c*> 37 (c')? > a(G)/B(G).0
Theorem 33 ¢(G) < 3(G).
Proof: o(G*) < 3(G*) < [B(G)]* and hence the theorem.
Theorem 34 ¢(Cs) = /5.

Proof: It is well known that ¢(C5) > v/5. To show the reverse inequality, we
show that 3(Cs) < v/5. To do this we exhibit an orthonormal representation
that does the job. The vectors u* correspond to the ribs and c is the handle
of an umbrella with five ribs that is opened to the point where the maximum
angle between the ribs is 5. All vectors are oriented away from the common

point. It is easy to show that clu’ = 51 (see remark below) . Hence the

result.
In the attached figure, we want to calculate x. It is easy to see that:
T = a _ ¥/2sin18° cos 18° = 1

sin 36° 2 sin 18° V2 cos 18°
Now we calculate cos 18°. If we let 8 = 18° then we have:

1 =sin50 = sin 36 cos26 + sin 26 cos 36

=2s8in20 cos26 cosf + sinf cos2260 —sinf sin 226

= 162° — 2023 + 52z where z = sin 6.

Hence z satisfies the equation

162° — 2023 + 52 — 1

=(2—1)(422 +22 —1)?2 = 0. Since z # 1, z satisfies the equation
422 + 2z —1 =0 and hence z = 3%. Hence cos 0 = @.
ctu? = cos 3 where x = sin 3. Hence

cut = /(1 — 22) = \/(2cos20 — 1) /2 cos 20
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3.4.2 Calculation of B(G)

Theorem 35 Let A(G) be the class of symmetric matrices satisfying a;; =
Lifi=j orif(i,j) ¢ E for a graph G = [N, E]. Then: 3(G) = minaca(q) [the largest eigenvalue of A].
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Proof: (i)Let u%;1 < i < n be an optimal orthonormal representation of
G with handle ¢. DefineA by:

(') u?
(ctut)(ctu?)

Vi # j.

a; =105 =1 -

A satisfies the conditions of the theorem. Moreoever,

—aij =[c— ;;i}t[c - c?—zijwi 7
and: i 1
B(G) — ai; = [c — %}2 +18(G) - W}

These equations imply that 8(G)I — A is positive semidefinite, and hence
the largest eigenvalue of A is at most 5(G).

Conversely let A be a matrix satisfying the above conditions and let A be
its largest eigenvalue. Then Al — A is positive semidefinite and hence there
is a factorization of A: i.e. 3 vectors ;1 < i < n such that Aij —ay; =
()t (27) where & is the Kronecker function. Let ¢ be a vector of length 1
which is orthogonal to each of the z* (such a vector exists because \ is an
eigenvalue of the matriz A). Let u* = (c+z*)/v/A. Then, (u?)? = [1+(2?)?];
(W)t (w?) = [1+ (@) (29)]/A =0V (i,5) ¢ E. Hence u’;1 < i < n is an
orthonormal representaiton for G. Moreover, A = 1/(ctu®)Vi. hence 3(G) <
A. This completes the prrof of the theorem.O

The next result gives a method of computing 3(G).

Theorem 36 Let G be as before. Let:

M = [B: B nxn psd symmetric]N [B : b;; = 0V i # j;(i,j) €
E;Tr(B) =), bii = 1]. Then B(G) = maxpem >, ) _; bij = maxper Tr(BJ).
Dropping the symmetry requirement and changing Tr(B) = 1to Tr(B) <1
does not affect the result.

Proof: Let A be a matrix satisfying the conditions of the previous theorem
with largest eigen value 5(G). Let B € M. Then:

Tr(BJ) = Zme« = Zzam«bi,j =Tr(AB)

T

and hence:

Tr([B(G)I — A]B) = B(G) — Tr(BJ)

Here both [3(G)I — A] and B are positive semidefinite. Let 2/, 1 <i <n
be a set of orthonormal eigen vectors of B with eigen values corresponding
to them equal to \;, 1 <17 < n. Note that \; > 0V ¢. Then:

Tr([8(G)I — A|B) = 371, (2)'[B(G)] — A|B2*

=2im M) BG)T - Al



