
Preflow Push Algorithms for Maximum Flow

R. Chandrasekaran

Abstract

0.1 Maximum Flow Problem:[CLRS]

INPUT: A directed simple graph G = [V ;E] with positive edge capacities
c(e); e ∈ E and two distinguished nodes s, t ∈ V .

Definition 1 A feasible flow is a function f : E → R+ that satisfies:

∑

v∈V
(u,v)∈E

f(u, v)−
∑

v∈V
(v,u)∈E

f(v, u) =






F
0
−F

u = s
u �= s, t
u = t

0 ≤ f(u, v) ≤ c(u, v) ∀(u, v) ∈ E

We want a feasible flow that maximizes F .

Definition 2 A preflow is a function f : E → R+ that satisfies:

ef (u) =
∑

v∈V
(v,u)∈E

f(v, u)−
∑

v∈V
(u,v)∈E

f(u, v) ≥ 0 ∀u �= s

0 ≤ f(u, v) ≤ c(u, v) ∀(u, v) ∈ E

where ef(u) is called the excess at u with respect to preflow f . This algorithm
maintains a preflow at all times and ends with a feasible flow that maximizes
F .

Definition 3 A node u for which ef(u) > 0 is said to be overflowing with
respect to f .

1

Definition 4 Residual Capacity: cf (u, v) = c(u, v) − f(u, v) ≥ 0∀u ∈
V, v ∈ V .

Definition 5 Residual Graph: Gf = [V,Ef];Ef = {(u, v) : u ∈ V, v ∈
V, cf(u, v) > 0}

Definition 6 A function hf : V → N that satisfies

hf (s) = |V |

hf(t) = 0

hf(u) ≤ hf (v) + 1 ∀(u, v) ∈ Ef

is called a height function relative to f .

Definition 7 Given a preflow f and a height function hf , (u, v) is called
an admissible edge if (u, v) ∈ Ef [i.e. cf (u, v) > 0], u is overflowing [i.e
ef(u) > 0], and hf(u) = hf(v) + 1.

Lemma 1 Let G = [V ;E] be a flow network. Let f be a preflow in G and let
hf be a height function relative to f . Then [hf (u) > hf (v)+1]⇒ (u, v) /∈ Ef .

PUSH(u, v):

1. // Applies when: ef (u) > 0; cf (u, v) > 0;hf(u) = hf (v) + 1. This
means that (u, v) is an admissible edge.

2. //Action: Push ∆f (u, v) = min[ef(u), cf (u, v)] units of flow from u to
v along edge (u, v) ∈ Ef .

3. ∆f(u, v) = min[ef (u), cf(u, v)]

4. if (u, v) ∈ Ef

5. f(u, v)← f(u, v) + ∆f (u, v)

6. else f(v, u)← f(v, u)−∆f(u, v)

7. ef(u)← ef(u)−∆f(u, v)

8. ef(v)← ef(v) + ∆f (u, v)

2

Definition 8 If ∆f(u, v) = cf(u, v), this PUSH operation is called a satu-
rating push; else, it is a nonsaturating push.

Lemma 2 If PUSH(u, v) is a nonsaturating push, then u is no longer over-
flowing after this push.

Now we describe the other operation in this algorithm.
RELABEL(u):

1. //Applies when: u is overflowing and hf (u) ≤ hf (v)∀(u, v) ∈ Ef

2. //Action: Increase the height of u

3. hf(u)← 1 + min[hf (v) : v such that (u, v) ∈ Ef]

Remark 1 If u is overflowing, then {v : (u, v) ∈ Ef} �= φ; actually there is
a directed path from u to s in Gf .

Lemma 3 Let u be an overflowing vertex; i.e. ef(u) > 0. Then, either
there exists an applicable PUSH(u, v) for some v ∈ V or RELABEL(u) is
applicable.
Proof. [(u, v) ∈ Ef] ⇒ hf (u) ≤ hf (v) + 1 since hf is a height function. If
PUSH does not apply to u, then hf(u) ≤ hf(v) for all (u, v) ∈ Ef and hence
RELABEL applies to u.

0.2 The Main Algorithm:

GENERIC-PUSH-RELABEL(G, s, t, c)

1. INITIALIZE-PREFLOW(G, s, t, c)

2. while there exists applicable push or relabel operation,

3. select an applicable push or relabel operation and perform it.

INITIALIZE-PREFLOW(G, s, t, c)

1. for each vertex v ∈ V

2. hf(v)← 0

3

3. ef(v)← 0

4. for each edge (u, v) ∈ E

5. f(u, v)← 0

6. hf(s)← |V |

7. for each vertex v ∈ adj[s]

8. f(s, v)← c(s, v)

9. ef(v)← c(s, v)

10. ef(s)← ef (s)− c(s, v)

1 Analysis of the Algorithm:

Lemma 4 hf(u) is nondecreasing as the algorithm GENERIC-PUSH-RELABEL(G, s, t, c)
evolves for all u ∈ V .
Proof. hf (u) changes during the course of the algorithm only when we relabel
u. This happens when hf (u) ≤ hf(v) for all (u, v) ∈ Ef and the new value
of hf (u) = 1 + minv:(u,v)∈Ef [h

f(v)]. Hence the lemma.

Lemma 5 GENERIC-PUSH-RELABEL algorithm maintains the attribute
h as a height function at all times.
Proof. hf(s) = |V | ;hf(t) = 0 at all times during the evolution of this
algorithm. hf (u) changes is when u is relabeled. The manner in which it is
relabeled preserves the relation hf(u) ≤ hf(v) + 1∀(u, v) ∈ Ef . PUSH(u, v)
may add edge (v, u) to Ef or remove (u, v) from Ef ; in the former case, we
have hf(v) = hf (u)− 1 ≤ hf(u) + 1. Hence the lemma follows.

Lemma 6 Let f be a preflow and let hf be a height function with respect to
f in a flow network G = [V,E]. Then, there is no path in Gf from s to t.
Proof. Suppose there is a (simple) path p = (s = v0, v1, ..., vk = t) in Gf ;
k ≤ |V | − 1. Since hf is a height function, it follows that

hf(vi) ≤ h
f (vi+1) + 1 for i = 0, 1, 2, ...k − 1

Hence, it follows that
hf (s) ≤ hf(t) + k

4

Since hf(t) = 0 , this implies that hf(s) ≤ k ≤ |V | − 1; but this is a
contradiction to the fact that hf(s) = |V |. Hence the result follows.

Theorem 1 If GENERIC-PUSH-RELABEL(G, s, t, c) algorithm terminates,
then the preflow f it computes is a maximum flow from s to t in (G, c).
Proof. If f is a preflow at some step and we perform a PUSH operation,
then resulting f is also a preflow. INITIALIZE yields a preflow. Hence, at
all times, the algorithm maintains a preflow by induction. At termination,
ef(u) = 0 for all u ∈ V − {s}. Hence, f at termination is a flow in (G, c).
Moreover, at termination, there is no path in Gf and hence f is a maximum
flow.

1.1 Complexity Analysis of the Algorithm:

Lemma 7 Let f be a preflow in (G, s, t, c) where G = [V,E] is a flow net-
work. Then, for any overflowing vertex x, there is a simple path from x to s
in Gf .
Proof. By induction. The only nodes that are overflowing after INITIAL-
IZE belong to the set {v : c(s, v) > 0}. For each of these, in Gf just after
INITIALIZE, there is an edge of the form (v, s). Suppose at some step of
the algorithm, the result holds. Since RELABEL does not affect this, sup-
pose we now perform a PUSH(u, v). Just before this operation, vertex u was
overflowing and hence by induction hypothesis, there is a simple path in Gf

from u to x in the preceding residual graph Gf . This PUSH does not affect
that path. After this PUSH there is the edge (v, u) in the new residual graph
and hence a path from v to s. This takes care of the possibility that vertex v
is overflowing after the PUSH.

Lemma 8 At any time during GENERIC-PUSH-RELABEL(G, s, t, c), hf(u) ≤
2 |V | − 1 for all u ∈ V .
Proof. The statement is clearly true for u = s, t. For any other vertex
u, hf (u) is initially equal to 0 ≤ 2 |V | − 1. We will show that after each
RELABEL(u), the result holds. When u is relabeled, it is overflowing (both
before and after RELABEL) and hence there is a simple path p = (u =
v0, v1, ..., vk = s) from u to s in Gf with k ≤ |V |−1. Moreover, (vi, vi+1) ∈ E

f

for 0 ≤ i ≤ k − 1. Hence, hf(vi) ≤ h
f (vi+1) + 1 for 0 ≤ i ≤ k − 1. Hence

hf(u) ≤ hf(s) + |V | − 1 ≤ 2 |V | − 1.

5

There are three types of operations in this algorithm: RELABEL, satu-
rating PUSH, and nonsaturating PUSH. In the analysis phase,we separately
bound the number of each of these types of operations to get an overall com-
plexity of O(V 2E) for the generic algorithm which does not specify the order
in which these are to be carried out. By doing them in special ways, we can
save further to reduce the complexity to O(V 3).

1.1.1 Bound on number of RELABEL Operations:

Since hf (u) ≤ 2 |V |− 1 for all u ∈ V −{s, t}, and hf (s), hf (t) do not change,
each RELABEL(u) increases hf (u) by at least 1, the number of RELABEL
operations is bounded by (2 |V | − 1)(|V | − 2) = O(|V |2).

1.1.2 Bound on number of Saturating PUSH Operations:

For any two vertices u and v, let us count the number of saturating pushes
for both (u, v) and (v, u) together. If there are such pushes, then either (u, v)
or (v, u) or both belong to E. Suppose a saturating push from u to v has
occurred. hf(v) = hf (u) − 1. For another saturating push from u to v to
occur later, the algorithm must first push flow from v to u which cannot
happen until hf

′

(v) = hf
′

(u) + 1. Since hf(u) never decreases for any vertex
u, in order for this to happen hf (v) needs to increase at least by 2. Likewise
hf(u) must also increases by 2 between successive saturating pushes from v
to u. Height starts at 0 and is always ≤ 2 |V | − 1. Hence, the number of
times this happens (the height increases by 2) is no more than |V |. Hence
the number of saturating pushes using the vertices u and v is no more than
2 |V | and therefore the total number of these is no more than 2 |V | |E|.

1.1.3 Bound on number of Nonsaturating PUSH Operations:

Let
Φ =

∑

v:ef (v)>0

hf (v)

be a potential function. Initially, Φ = 0, and this may change after each
RELABEL, saturating PUSH, and nonsaturating PUSH operations. Since
we have bounds on the first two operations, we can bound their contributions
to Φ. Then we show that nonsaturating PUSH operations reduce Φ by at

6

least 1. This will then give us an upper bound on nonsaturating PUSH
operations.
Φ increases only when we RELABEL or use a saturating PUSH operation.

RELABEL(u) cannot increase its height by more than its maximum height
which is 2 |V | − 1. A Saturating PUSH from u to v renders ef(u) = 0 after
the operation but can make ef(v) positive and so increase Φ by hf (v);but
in order for PUSH(u, v) to apply, we have hf (u) = hf(v) + 1 and hence the
decrease in Φ cannot be less than 1. Thus, during the course of the algorithm,
Φ can increase by no more than (2 |V | − 1)2(|V | − 2)+ 2 |V | |E| (2 |V | − 1) ≤
4 |V |2 (|V |+|E|). SinceΦ ≥ 0, the number of nonsaturating PUSH operations
is bounded by 4 |V |2 (|V |+ |E|). RELABEL takes O(|V |); PUSH takes O(1)
time; Selecting the operation that applies takes O(1) time with appropriate
data structure. [Show this]. Hence the entire algorithm takes O |V |2 |E|)
time. To reduce this to O(|V |3) use RELABEL-TO-THE-FRONT approach.

7

