
Scheduling

R. Chandrasekaran

March 24, 2020

Scheduling Summer 1996 R. Chandrasekaran

1. Approximation to m-Machine Flow Shops

Vector Summation in Banach Space and polynomial Algorithms for Flow
Shops and Open Shops, by S. Sevest’janov, Mathematics of Opera-
tions Research, 20, (1995), pp. 90-103

A Vector-Sum Theorem and its Application to improving Flow Shop
Guarantees by Imre Barany, Mathematics of Operations Research,
vol 6 #3, August 1981, pp. 445-452.

The original form of this theorem is known as Compact Vector Summation
(CVS) thoerem due to Steinitz (1913) where instead of 3

2
d, was a function φ(d).

Sevestyanov (1978) has d instead of 3
2
d with slightly different complexity. The

discussion here is from Barany’s paper.

Theorem 1 For a finite set V = {v1, v2, ..., vn} ⊆ Rd with

n∑

i=1

vi = 0

‖vi‖ ≤ 1 ∀i

where ‖x‖ is any norm for x [here we use ‖x‖ = maxdj=1 |xj |] there is a permu-
tation i1, i2, ..., in of the set {1, 2, .., n} such that

max
1≤k≤n

∥∥∥∥∥∥

k∑

j=1

vij

∥∥∥∥∥∥
≤

3

2
d

This permutation can be found in O(n2d3 + nd4) steps.

First we will show the application of this result to get approximate solution
to flowshops. Consider a m-machine n-job flow shop. Let ti,j represent the
processing time of job i on machine j. Suppose ti,j ≤ K for all i and j. Let
Mj =

∑n
i=1 ti,j ≤ nK for all j; and M = maxmj=1Mj ≤ nK. From this input,

we can modify the data so that we get new processing times t′i,j that satisfy:

ti,j ≤ t′i,j ≤ K
n∑

i=1

t′i,j = M ∀j

1

and this can be done in polynomial time. An example is shown below:

t =
3 4 0 5
2 2 2 2
3 2 1 4

M = 12;M1 = 12;M2 = 8;M3 = 10;K = 5. Its corresonding t′ looks like:

t′ =
3 4 0 5
5 3 2 2
5 2 1 4

Theorem 2 There exists a permutation schedule for which the finish time T
satisfies the inequalties:

M ≤ T ≤M + (m− 1)[
3m− 1

2
]K

Moreover this schedule can be obtained in O(n2m3 + nm4) steps.
Proof. (Using Theorem above): First we construct a fictitious problem with
same number of jobs and machines for which the processing times are gien by
t′i,j where

ti,j ≤ t′i,j ≤ K for all i, j
n∑

i=1

t′i,j = M for all j

This is easy to in O(nm) steps. Given a permutation i1, i2, ..., in of jobs, the
finish time for this schedule is given by

T = max
1=k0<k1<k2<...<km=n

m−1∑

j=1

kj+1∑

s=kj

tis,j+1

Hence

T ′ = max
1=k0<k1<k2<...<km=n

m−1∑

j=1

kj+1∑

s=kj

t′is,j+1

Clearly M ≤ T ≤ T ′.

Given a permutation (i1, i2, ..., in) of jobs and a corresponding permuta-
tion schedule, we get a precedence graph that is shown below for permutation

2

(1, 2, .., 6):

2 3 4 5 61

2 3 4 5 61

2 3 4 5 61

2 3 4 5 61

M1

M2

M3

M4

Please note the horizontal edges depict the permutation schedule and the vertical
ones depict the order in which jobs must go through machines in the flowshop.
All horizontal edges go to the right and all vertical ones go down. The longest
path from top left to bottom right gives us the length of the schedule where each
node has weight corresponding the processing time of the job on the machine.
One such path is indicated in red. This is what is used in the formula for length
of the permutation schedule with (i1, i2, ..., in) and processing times ti,j :

T = max
1=k0≤k1≤...≤km=n

m−1∑

j=0

kj∑

s=1

tis,j+1

Similarly for t′i,j we get T
′ for the same permutation:

T ′ = max
1=k0≤k1≤...≤km=n

m−1∑

j=0

kj∑

s=1

t′is,j+1

Since ti,j ≤ t
′
i,j∀i, j;M = maxjMj where Mj =

∑n

i=1 ti,j it follows that

M ≤ T ≤ T ′

The next equation needs some explanation: We first state it and show it for the
example above with m = 4;n = 6.

T ′ = M +max[
m−1∑

j=1

t′ikj ,j+1
+
m−1∑

j=1

kj∑

s=1

(t′is,j − t
′
is,j+1

)]

3

≤ M + (m− 1)K +max[
m−1∑

j=1

kj∑

s=1

(t′is,j − t
′
is,j+1

)]

where max is taken over 1 = k0 ≤ k1 ≤ ... ≤ km = n. In the above diagram for
the red path 1 = k0; k1 = 3;k2 = 4; k3 = 5; k4 = 6−n. Assume the permutation
is (1, 2, ..., n). Hence is = s in the above equation. Now we concentrate on the

expression
∑m−1

j=1

∑kj
s=1(t

′
is,j

− t′is,j+1)]. Expanded it looks like:

i→
j↓

k0 = 1 2 k1 = 3 k2 = 4 k3 = 5 k4 = 6

1 t′1,1 − t
′
1,2 t′2,1 − t

′
2,2 t′3,1 − t

′
3,2

2 t′1,2 − t
′
1,3 t′2,2 − t

′
2,3 t′3,2 − t

′
3,3 t′4,2 − t

′
4,3

3 t′1,3 − t
′
1,4 t′2,3 − t

′
2,4 t′3,3 − t

′
3,4 t′4,3 − t

′
4,4 t′5,3 − t

′
5,4

All terms in bold cancel out and we get this equals:

i→
j↓

k0 = 1 2 k1 = 3 k2 = 4 k3 = 5 k4 = 6

1 t′1,1 t′2,1 t′3,1
2 t′4,2
3 −t′1,4 −t′2,4 −t′3,4 −t′4,4 t′5,3 − t

′
5,4

[
∑m−1
j=1 t

′
ikj ,j+1

looks like:

i→
j↓

k0 = 1 2 k1 = 3 k2 = 4 k3 = 5 k4 = 6

1 t′3,2
2 t′4,3
3 t′5,4

and the sum of these two looks like:

i→
j↓

k0 = 1 2 k1 = 3 k2 = 4 k3 = 5 k4 = 6

1 t′1,1 t′2,1 t′3,1
2 t′3,2 t′4,2
3 −t′1,4 −t′2,4 −t′3,4 t′4,3 − t

′
4,4 t′5,3

Consider the expression for M ′ =M =M ′
4 = t

′
1,4+ t

′
2,4+ t

′
3,4+ t

′
4,4+ t

′
5,4+ t

′
6,4.

Adding to the above we get:

i→
j↓

k0 = 1 2 k1 = 3 k2 = 4 k3 = 5 k4 = 6

1 t′1,1 t′2,1 t′3,1
2 t′3,2 t′4,2
3 t′4,3 t′5,3
4 t′5,4 t′6,4

4

which is the expression
∑m−1

j=0

∑kj
s=1 t

′
is,j+1

. Hence the result follows. The last
inequality in the equation comes from the fact t′i,j ≤ K∀i, j.

Now to transform this so that we can apply the first thereom, we let:

vi = [(t′i,1 − t
′
i,2), (t

′
i,2 − t

′
i,3), ..., (t

′
i,m−1 − t

′
i,m)] ∈ R

m−1; i = 1, 2, ..., n

n∑

i=1

vi = [(
n∑

i=1

t′i,1 −
n∑

i=1

t′i,2), (
n∑

i=1

t′i,2 −
n∑

i=1

t′i,3), ..., (
n∑

i=1

t′i,m−1 −
n∑

i=1

t′i,m)]

But
∑n
i=1 t

′
i,j = M∀j. Hence

∑n
i=1 vi = 0 ∈ Rm−1. Since t′i,j ≤ K∀i, j; it

follows that
∣∣t′i,j − t′i,j+1

∣∣ ≤ K∀i, j.
Moreover,

max[
m−1∑

j=1

kj∑

s=1

(t′is,j − t
′
is,j+1

)] ≤ (m− 1)
n

max
k=1

∥∥∥∥∥

k∑

s=1

vis

∥∥∥∥∥

with ‖x‖ = maxi |xi| which is a norm called the ∞− norm. The first theroem
states there is a permutation i1, i2, ..., in for which

n
max
k=1

∥∥∥∥∥

k∑

s=1

vis

∥∥∥∥∥
≤

3(m− 1)

2
K

which in turn implies

M ≤ T ≤ T ′ ≤M + (m− 1)(
3(m− 1)

2
)K

The last term in the above is independent of n the number of jobs. Hence, as
the number of jobs increases, this algorithm tends to optimal solution. What
remains is a proof of the first theorem which we give now. I am following
Barany’s paper closely.

Thereom: For a finite set V = {v1, v2, ..., vn} ⊑ R
d with

∑n
i=1 vi = 0; ‖vi‖ ≤

1; i = 1, 2, ..., n there is a permutation i1, i2, ..., in such that max
n
k=1

∥∥∥
∑k

s=1 vis

∥∥∥ ≤
3

2
d. Moreover, this permutation can be found in O(n2d3 + nd4) steps.
Proof: Let

n∑

j=1

γjvj = 0

We call the vector γ as a linear dependence. Given the conditions of the theorem,
γ = (0, 0, ..., 0) ∈ Rn and γ = (1, 1,, 1) ∈ Rn are both linear dependences.
The algorithm produces a finite sequence of linear dependences γ0, γ1, ..., γp.
For i = 1, 2, ..., p let

Ai = {j : γij = 1}

Bi = {j : 0 < γij < 1}

Ci = {j : γij = 0}

5

The set of linear dependences will satisfy the following relations:
(a) 0 ≤ γij ≤ 1; i = 1, 2, ..., p; j = 1, 2, ..., n

(b)
∑n

j=1 γ
i
jvj = 0; i = 1, 2, ..., p

(c)|Bi| ≤ d; i = 1, 2, ..., p
(d)Ai+1 ⊃ Ai; i = 1, 2, ..., p− 1⇔ the set of components that are equal to 1

in γi+1 includes those in γi and there is at least one more in γi+1.
(e)Ap = {1, 2, ..., n} ⇔ γp = (1, 1, ..., 1) ∈ Rn

(f)|Bi+1 ∪Ai+1\Ai| ≤ 2d; i = 1, 2, ..., p − 1 ⇔ the number of positive ele-
ments in γi+1 is no more than 2d larger than the numebr of 1’s in γi.

6

