
Scheduling: Flowshops

R. Chandrasekaran

February 4, 2020



0.1 Problem Statement:

Given n jobs each of which requires m operations that are to be done on m
different machines (one on each), with a specified order which is the same for all
jobs is called a flowshop. Let ti,j be the time required for processing of operation
j of job i.

We consider the problem of minimizing makespan, i.e Fmax. We assume that
all jobs are available at time 0. We also assume that there is unlimited storage
at intermediate facilities. It is not at all clear that there is an optimal schedule
in which the order of processing jobs on each machine is the same. Schedules
that restrict so that this is true are called permutation schedules. For m = 2
there indeed do exist optimal schedules that are permutation schedules. This is
shown as follows:

Lemma 1 There exist an optimal schedule for a flowshop with m = 2, that
minimizes makespan in which there is no preemption or inserted idle time.
Proof. Suppose an optimal schedule has premptions on first amchine such as
in the first of the figures below, we can consolidate all pieces of the same job
to its last pience and slide all pieces of all jobs in between to the elft without
affecting the validity of the schedule or its makespan. Hence there is an optimal
schedule with no preemptions on the first machine.

Simliar consolidation to the first piece as shown can be done on the last
machine.

Hence the result follows for m = 2.

1



Lemma 2 Considering only nonpreemptive schedules, there exists an optimal
schedule for flowshop problems to minimize makespan in which jobs are processed
in the same order on the first two machines (and on the last two machines).
Proof. Suppose we have an optimal schedule in which the order is not the
same on the first two machines as shon below:

Change the schedule on the first machine so that the order is the same as follows
and compress on machine 2 if that is possible. :

Interchange these two jobs as shown below:

Similar arguments show the process for the lst wo machines. Hence, for
m = 2, 3 we get a permutation schedule for an optimal solution if no preemption
is allowed. For m = 2 we know there is optimal schedule that has no preemption.
Hence we can restrict our attention to permutation schedules for m = 2.

[S. Johnson, 1954]: m = 2, Fmax:

1. S1 ← {i : pi,1 = A[i] ≤ pi,2 = B[i]};S2 ← {i : pi,1 = A[i] > pi,2 =
B[i]}//S1 ∪ S2 = {1, 2, ..., n};S1 ∩ S2 = φ

2



2. Sort elements of S1 in nondecreasing order of values of A[i]. Let this order
be indeicated by T1//”ties” are broken abribitrarily

3. Sort elements of S2 in nonincreasing order of B[i]. Let this order be
indeicated by T2//”ties” are broken abribitrarily

4. Process the jobs on both machines in the order [T1, T2]

Complexity of the algorithm: Θ(n lgn).

Before proving correctness of the algorithm, we can also state the algorithm
in a slightly different manner so as to show that it si an example of ”greedy
algorithm”.

At each step, find the lest processing time (on either machine) of the jobs
yet to be processed; if that value corresponds to machine 1 place the jbow in
the next position from front; if it happens to be on machine 2 place the job in
the next position from the rear. Again ”ties” are broken arbitrarily.

Now to prove correctness of the algorithm.
Let permutation schedule be denoted by [1], [2], ..., [n]. Here is how the

”Gantt” chart might look like for this permutation schedule:

A[1] A[2] A[3]

X[1]

A[n]

B[1] X[2] B[2] B[3] B[5] Idle

Idle

X[4]

Here X[i] indicates the idle time on machine 2 before processing job i. The
following expressions for these values are easily checked:

X[1] = A[1]

X[2] = max[A[1] +A[2]−B[1]−X[1], 0]

X[j] = max[

j∑

i=1

A[i]−

j−1∑

i=1

B[i]−

j−1∑

i=1

X[i], 0]

From this we can obtain;

j∑

i=1

X[i] =
j

max
k=1

[
k∑

i=1

A[i]−
k−1∑

i=1

B[i]]

=
j

max
k=1

Y [k]

where Y [k] =
∑k
i=1A[i]−

∑k−1
i=1 B[i] and B[0] = 0. For any permutation sched-

ule S

Fmax(S) =
n∑

i=1

B[i] +
n∑

i=1

X[i]

3



=
n∑

i=1

Bi +
n

max
k=1

Y [k]

However,
∑n

i=1Bi is a constant independent of the schedule. Hence minS Fmax(S)
is equivalent to minimizing maxnk=1 Y [k]. Please note that [k] depends on S.

Approximation to m-Machine Flow Shops

1. Vector Summation in Banach Space and polynomial Algorithms for Flow
Shops and Open Shops, by S. Sevest’janov, Mathematics of Opera-
tions Research, 20, (1995), pp. 90-103

See the reference to I. Barany 1981 paper in the above.

Theorem 3 (Barany) For a finite set of vectors V = {v1, v2, ..., vn} ⊆ Rd

with
∑n

i=1 vi = 0 and ‖vi‖ ≤ 1 for i = 1, 2, ..., n there exists a permutation
i1, i2, ..., in of {1, 2, ..., n} such that

max
1≤k≤n

∥∥∥∥∥∥

k∑

j=1

vij

∥∥∥∥∥∥
≤

3

2
d

Moreover, this permutation can be found in O(n2d3 + nd4) steps.

The original form of this theorem is known as Compact Vector Summation
(CVS) thoerem due to Steinitz (1913) where instead of 3

2
d, was a function φ(d).

Sevestyanov (1978) has d instead of 3
2
d with slightly different complexity.

First we will show the application of this reult to get approximate solution
to flowshops. Consider a m-machine n-job flow shop. Let ti,j represent the
processing time of job i on machine j. Suppose ti,j ≤ K for all i and j. Let
Mj =

∑n

i=1 ti,j ≤ nK for all j; and M = maxmj=1Mj ≤ nK.

Theorem 4 There exists a permutation schedule for which the finish time T
satisfies the inequalties:

M ≤ T ≤M + (m− 1)[
3m− 1

2
]K

Moreover this schedule can be obtained in O(n2m3 + nm4) steps.
Proof. (Using Theorem above): First we construct a fictitious problem with
same number of jobs and machines for which the processing times are gien by
t′i,j where

ti,j ≤ t′i,j ≤ K for all i, j
n∑

i=1

t′i,j = M for all j

4



This is easy to in O(nm) steps. Given a permutation i1, i2, ..., in of jobs, the
finish time for this schedule is given by

T = max
1=k0<k1<k2<...<km=n




m−1∑

j=1

kj+1∑

s=kj

tis,j+1





Hence

T ′ = max
1=k0<k1<k2<...<km=n




m−1∑

j=1

kj+1∑

s=kj

t′is,j+1





Clearly M ≤ T ≤ T ′.

5


