
Scheduling: Open Shop Problems

R. Chandrasekaran

0.0.1 O2|Cmax|Non-preemptive:

This section deals with open shop problems. Here we have a set of jobs and a
set of machines. Each job requires processing by each machine (if some jobs
do not require processing by a machine, then we set the appropriate time
to zero). Let pj,i denote the duration job i requires on machine j; 1 ≤ i ≤
n; 1 ≤ j ≤ m. In this section we consider m = 2, and when no preemption is
allowed. We wish to minimize the makespan.

Let

α = max[
n∑

i=1

p1,i;
n∑

j=1

p2,i;
n

max
i=1
{p1,i + p2,i}]

Clearly, Cmax(S) ≥ α ∀ S. (Actually a similar result is true for all m).
We show equality for m = 2. Without loss of generality, let us suppose that
∑n
i=1 p1,i ≥

∑n
j=1 p2,i; p1,1 + p2,1 = max1≤i≤n{p1,i + p2,i}.

Case (i): p1,1 + p2,1 ≥ min[
∑n
i=1 p1,i,

∑n
i=1 p2,i] =

∑n
i=1 p2,i

This implies that p1,1 ≥
∑
i�=1 p2,i. Consider the schedule shown in the

figure below:

p
1,1

p
2,1

This schedule has length equal to max[p1,1 + p2,1;
∑n
i=1 p1,i] = α.

Case (ii): p1,1 + p2,1 < min[
∑n
i=1 p1,i,

∑n
i=1 p2,i] =

∑n
i=1 p2,i

Let ∆ =
∑n
i=1 p1,i −

∑n
i=1 p2,i ≥ 0; p′2,1 = p2,1 + ∆; p′j,i = p′j,i for

i �= 1; ∀ j; p′1,1 = p1,1.

n∑

i=1

p′2,i =
n∑

i=1

p′1,i = α ≥ p′1,1 + p′2,1 =
n

max
i=1
{p′1,i + p′2,i}

Thus, if we show the result for this case, it follows for other cases. Note
that the value of α has not changed.

1

Now we use the LAPT – Largest Alternate Processing Time — Rule
for obtaining the schedule. (Actually this works for the previous case
as well; it was easier to prove this way).

Whenever a machine is free, load the job which requires the largest
processing time on the OTHER machine from among all jobs that still
have not been processed by either machine (if they are available). Then
process the remaining jobs in the same order that they were processed
on the other machine.

Let Sj be the set of jobs which are processed first by machine j; 1 ≤
j ≤ 2. Let tj be the instant of time when all of the jobs in the set Sj
finish on machine j; 1 ≤ j ≤ 2. See figure below:

S
1

S
2

i

t
1

t
2t

3

If |S2| = 1, then we have a case similar to (i). So, we suppose that
this is not the case. At instant t1, there can be no jobs that require
processing on both machines (else, the algorithm would load such a job
on machine 1, contradicting the definition of the set S1). Hence all jobs
in the set S2 except possibly the last one, can be processed on machine
1 at t1. Clearly, all jobs in S1 can be processed on machine 2 at t2. Let
t3 be the last instant a job in S2 gets loaded on machine 2 (t3 < t1); and
let this job be i. To show that the last job in S2 can also be processed
on machine 1 without an idle period, we need to show that

∑

k∈S2;k �=i

p1,k ≥ t2 − t1

Recall

∑

k∈S2;k �=i

p1,k + p1,i = α−
∑

k∈S1

p1,k = α− t1

2

The rule LAPT selects jobs so that the processing time on the other
machine is the largest. Since |S2| > 1,and all jobs in S2 other than i
were selected before i by LAPT, we have

∑

k∈S2;k �=i

p1,k ≥ p1,i

Therefore,

∑

k∈S2;k �=i

p1,k ≥
α− t1

2

Since jobs not in S2 [which are in S1] have larger processing time on
machine 2 than those in S2, with the possible exception of job i, because
we are using LAPT rule,

α− t2 ≥ t2 − t3 =
∑

k∈S2−{i}

p2,k

Hence

t1 +
∑

k∈S2;k �=i

p1,k ≥
α+ t1

2
≥
α + t3

2
≥ t2

Hence, none of the jobs in S2 have idle times on machine 1. Since none
of the jobs in S1 have idle times on machine 2, the schedule length
equals max[

∑n
i=1 p1,i;

∑n
i=1 p2,i] = α. Hence the schedule is optimal.

Now we turn to preemptive schedules.

0.0.2 O2|Cmax|Preemptive:

Clearly Cmax ≥ max[maxmj=1
∑n
i=1 pj,i; maxni=1

∑m
j=1 pj,i] = α. We show that

this value can always be achieved. We demonstrate this by an example which
clearly illustrates the proof of its optimality as well.

3

Example 1 m = 3;n = 4 :

15 30∗ 15
15 40∗ 5
15 40∗ 5

15∗ 45
20 15∗ 25

30 30∗

60∗

15∗ 15 15
15 25∗ 5
15 25∗ 5

45∗

20 25∗

30∗ 15
45∗

15∗ 15
15 10∗ 5
15∗ 10 5

30∗

20∗ 10
15 15∗

30∗

5 15∗

15∗ 5
5 10∗ 5

20∗

10 10∗

15∗ 5
20∗

4

5∗ 5
5∗ 5
5 5∗

10∗

10∗

5 5∗

10∗

5∗

5∗

5∗

5∗

5∗

5∗

5∗

J3

J4

J2

J1

J5

J6

J7

J1

J4

J2

J5

J6

J3

J7

J3

J4

J1

J5

J2

J6

J7

J4

J1

J2

J5

J6

J3

J7

J3

J1

J4

J5

J2

J6

J7

J4

J6

J1

J5

J2

J3

J7

Clearly, this schedule is optimal. Some improvements can be made as
shown by the following example;

Example 2 m = 6;n = 6 But this can be reduced to the previous example
with lower values for m and n by condensing jobs and machines as shown

below:

5






5 10 15
30

10 5 40
10∗ 5∗

10∗ 15∗

10 5 5






By combining machines {1, 2}, {3}, {4, 5, 6} into three super machines and
jobs {1, 2}, [3, 4}, {5}, {6} into four super jobs, we get the previous example.
(Note that there are better combinations possible; however, finding the best
is an NP-hard problem.) The durations are the total of these respective jobs
on these respective machines. Finally we unscramble the schedule as shown
below: For example the jobs {3, 4} on machines {4, 5} have a total of 40 units
of processing. This corresponds to super job 2 on super machine 3. The 40
units are arbitrarily broken down to suit the original jobs on the original
machines with no overlapping.

Now we can use this model to also solve the parallel machine case (both
identical and unrelated) with non-overlapping preemption. We show the
more general case of unrelated machines.

Recall the LP:

min z
∑n
i=1 tj,ixj,i ≤ z; 1 ≤ j ≤ m

∑m
j=1 tj,ixj,i ≤ z; 1 ≤ i ≤ n
∑m
j=1 xj,i = 1; 1 ≤ i ≤ n

xj,i ≥ 0

Here the variables xj,i denote the fraction of the job i done on machine
j. Once we get the values of the variables in an optimal solution, we can
calculate the duration tj,ix

∗
j,i required for each job on each machine. Now if

we let pj,i = tj,ix
∗
j,i and find an open shop preemptive schedule, we get the

required answer to the original problem.

6

