
Scheduling

R. Chandrasekaran

March 12, 2020

0.1 Problems on one Machine with Due Dates:

Consider one processor (=machine) system.
Input: n jobs; pj denotes the processing time for job j; dj denotes the due

date for job j; wj denotes the weight for job j [indicates priority for jobs].
A schedule S indicates the manner in which these jobs are processed by

the machine (not violating no-more-than-one-at-a-time rule). [Note: we are
allowing preemptions as long as they do not reduce the total duration for any
job.] Let Cj(S) denote the time at which job j is completed in schedule S.

Tardiness Tj(S) of job j in schedule S is given by

Tj(S) = max[Cj(S)− dj , 0]

There are several interesting questions:

1. Is there a schedule S in which Tj(S) = 0 for all j? [i.e. is there a schedule
in which all due dates are met?]

2. Find a schedule S∗ such that Tmax(S
∗) = maxj Tj(S

∗) = minS[Tmax(S)] =

minS[maxj Tj(S)̇]

3. Find a schedule S∗ that minimizes the number of jobs that tardy (i.e.
whose Tj(S∗) > 0).

4. Find schedule S∗ such that:

n∑

j=1

wjTj(S
∗) = min

S
[
n∑

j=1

wjTj(S)]

This problem is known as the weighted tardiness problem.

5. Special case of 4: All weights are equal (and hence assumed to be equal
to 1]. This problem is known as the average tardiness problem (T̄) on a
single machine.

We want minS[f(C1(S), C2(S), ..., Cn(S))] where f : Rn �→ R is some per-
formance measure. A performance measure is said to be a regular measure if the
function f is an isotonic function [multi-dimensional nondecreasing function].

Theorem 1 (R. McNaughton) If f is a regular measure, then there exists
an optimal schedule in which there is no preemption.
Proof. Concatenate all pieces of a job (assuming the schedule uses preemption)
to the last piece, sliding all pieces that occur in between to the left. By this process
consolidate all jobs. No completion time is increased by this process under the
assumption. Hence the result follows.

1

All of the above mentioned problems involve regular measures. Thus, from
now on, we may assume that the set of possible schedules that we need to
consider are in one-to-one correspondence with the set of permutations of the
set {1, 2, ..., n}. Some times we indicate a schedule S by its permutation π.

Earliest Due Date Schedule: In this schedule jobs are processed in nonde-
creasing order of dud dates (ties broken arbitrarily). This schedule is often
denoted by EDD.

Theorem 2 If there is a schedule for which the answer to question 1 is yes,
the EDD is one of these. Moreover, an answer to question 2 is also provided by
EDD.

Proof for question 2 is provided by adjacent interchange argument. If in
some schedule there are two adjacent jobs with i preceding j and di > dj , the
schedule obtained by interchanging these has a value of Tmax no more than the
one we started with.

For proof of question 1: Assume that in EDD some job is late; if there is any
schedule in which all jobs are done on time the first tardy job in EDD will have
to be processed earlier in this schedule — but this would imply one of jobs that
is processed prior to this job will have to take its place and this will be late in
that schedule.

Thus questions #1,2 can be answered in polynomial time. It turns out that
question #3 can also be done in polynomial time but that is not relevant to our
discussion.

Theorem 3 Weighted Tardiness Problem is strongly NP-complete (in its deci-
sion version).

Proof. 3-PARTITION≤pWTP.
Instance of 3-PARTITION: |S| = {x1, x2,, x3n};

B
4 < xi <

B
2 ;Q:Is there

are partition into n disjoint sets each adding to B?
Corresponding instance of WTP: Number of jobs equals 4n− 1. The values

of (pj , dj , wj) aer given as follows:

dj = 0; pj = xj ;wj = xj for 1 ≤ j ≤ 3n

dj = (j − 3n)(B + 1); pj = 1;wj = 2 for 3n+ 1 ≤ j ≤ 4n− 1

V =
1

2
(n− 1)nB +

3n∑

k=1

k∑

j=1

xjxk

Q: Is there a schedule S with [
∑n
j=1wjTj(S)] ≤ V ?

The problem is said to have agreeable weights if [pi < pj] ⇒ [wi ≥ wj].
When all weights are equal to 1, the problem is an agreeably weighted problem.

The following results are taken from E. Lawler’s 1977 paper on pseudopoly-
nomial algorithms for agreeably weighted case.

2

Theorem 4 Let the jobs have arbitrary weights. Let π be any sequence that is
optimal for due dates {d1, d2, ..., dn}. Let Cj(π) be the completion time of job j
in sequence π. Let {d′1, d

′
2, ..., d

′
n} be chosen so that

min[Cj(π), dj] ≤ d
′
j ≤ max[Cj(π), dj]

Then, any sequence that is optimal for due dates {d′1, d
′
2, ..., d

′
n} is also optimal

for due dates {d1, d2, ..., dn}. [The converse is not necessarily true].

Proof. Let π be an optimal sequence for due dates {d1, d2, ..., dn} and π′ be
an optimal schedule for due dates {d′1, d

′
2, ..., d

′
n}. Let

T (π) =
n∑

j=1

wj max[0, Cj(π)− dj]

T ′(π) =
n∑

j=1

wj max[0, Cj(π)− d′j]

T (π′) =
n∑

j=1

wj max[0, Cj(π
′)− dj]

T ′(π′) =
n∑

j=1

wj max[0, Cj(π
′)− d′j]

Let {A1, A2, ..., An} and {B1, B2, ..., Bn} be defined by the following relations:

Aj = 0 if Cj(π) ≤ dj

Bj = −wj max[0,min[Cj(π
′), dj]− d

′
j] if Cj(π) ≤ dj

Aj = wj(d
′
j − dj) if Cj(π) ≥ dj

Bj = wj max[0,min[Cj(π
′), d′j]− dj] if Cj(π) ≥ dj

Clearly, Aj ≥ Bj ; j = 1, 2, ..., n.
We can show that

T (π) = T ′(π) +
n∑

j=1

Aj

T (π′) = T ′(π′) +
n∑

j=1

Bj

We do this term by term.
If Cj(π) ≤ dj , min[Cj(π), dj] = Cj(π); max[Cj(π), dj] = dj . Hence

Cj(π) ≤ d′j ≤ dj

Hence Tj(π) = wj max[0, Cj(π)− dj] = 0 = wj max[0, Cj(π)− d′j] = T ′j(π) +Aj

3

If Cj(π) ≥ dj , min[Cj(π), dj] = dj ; max[Cj(π), dj] = Cj(π). Hence

dj ≤ d
′
j ≤ Cj(π)

Hence Tj(π) = wj max[0, Cj(π)−dj] = wj [Cj(π)−dj] = wj [Cj(π)−d′j]+wj [d
′
j−

dj] = T ′j(π) +Aj
Thus we have shown the first of the above equations. Now for the second:
Tj(π

′) = wj max[0, Cj(π
′)− dj];T

′
j(π

′) = wj max[0, Cj(π
′)− d′j].

If Cj(π) ≤ dj :
We need to consider three cases;
(a) Cj(π

′) ≤ d′j ≤ dj : Here Tj(π
′) = 0;T ′j(π

′) = 0;Bj = 0;Tj(π
′) = Tj(π

′) +
Bj

(b)d′j ≤ dj ≤ Cj(π
′): In this case Tj(π

′) = Cj(π
′) − dj ;T

′
j(π

′) = Cj(π
′) −

d′j ;Bj = wj(d
′
j − dj);Tj(π

′) = Tj(π
′) +Bj

(c)d′j ≤ Cj(π
′) ≤ dj : Here Tj(π′) = 0;T ′j(π

′) = Cj(π′)−d′j ;Bj = −wj [Cj(π′)−
d′j];Tj(π

′) = Tj(π
′) +Bj

Similar arguments work for the case when Cj(π) ≥ dj .
Hence both of the equations:

T (π) = T ′(π) +
n∑

j=1

Aj

T (π′) = T ′(π′) +
n∑

j=1

Bj

hold. Using these, we can show that π′ is also optimal for due dates {d1, d2, ..., dn}
as follows.

Since π′ is optimal for due dates {d′1, d
′
2, ..., d

′
n}, it follows that T ′(π) ≥

T ′ (π′). Hence T (π) ≥ T (π′) and so π′ is also optimal for due dates {d1, d2, ..., dn}.

Theorem 5 Suppose the jobs are agreeably weighted. ∃ an optimal schedule π
in which job i precedes job j if di < dj and pi < pj; moreover in π all on-time
jobs are occur in nondecreasing order of due dates.

Proof. Suppose jobs i and j satisfy above conditions and i follows j in some
schedule S′. Let a schedule S be formed from S′ by interchanging positions of
these two jobs [Note: They may not be adjacent jobs in either schedule and we
leave all other jobs in between in their old positions].

ij

i j

t1

t1

t2

t2

t1 +pj

t1 +pi

4

t1 + pj ≤ t2

Since di ≤ dj ; pi < pj , and hence wi ≥ wj it follows that

f(t) = wi max[t− di, 0]−wj max[t− dj , 0] ≥ 0 ∀t

and f(t) is nondecreasing function of t. Hence, it follows that:

wi max[t2−di, 0]−wj max[t2−dj , 0] ≥ wi max[t1+pj−di, 0]−wj max[t1+pj−dj , 0]

which implies the relation:

wi max[t2−di, 0]+wj max[t1+pj−dj , 0] ≥ wi max[t1+pj−di, 0]+wj max[t2−dj , 0]

Moreover,
wi max[t1 + pj − di, 0] ≥ wi max[t1 + pi − di, 0]

Combining these two relations we get:

wi max[t2−di, 0]+wj max[t1+pj−dj , 0] ≥ wj max[t2−dj , 0]+wi max[t1+pi−di, 0]

This in turn implies that schedule S is better than schedule S′. The second part
is easier to prove.

Theorem 6 Suppose jobs are agreeably weighted and numbered in EDD order.
Let pk = maxnj=1 pj. Then ∃δ, 0 ≤ δ ≤ n − k, such that there is an optimal
schedule in which job k is preceded by [1, 2, ..., k− 1, k+ 1, ..., k+ δ] and followed
by [k + δ + 1, ..., n].

Proof. Let C
′

k be the maximum completion time of job k in an optimal
schedule for due dates [d1 ≤ d2 ≤ ... ≤ dn]. Let π be an optimal schedule
with respect to due dates: [d1, d2, ..., dk−1, d

′
k = max[C

′

k, dk], dk+1, ..., dn] which
satisfies the conditions of the previous theorem with respect to the modified
due dates. Let Ck(π) denote the completion time of job k in π. By a previous
theorem, π is also optimal for [d1, d2, ...dk, ..., dn]. Hence Ck(π) ≤ d

′

k and hence
job k is on time in π for new due dates. Job k must be preceded in π by all
jobs in {1, 2, ..., k − 1, k + 1, ...k + δ} where δ is the largest integer such that
dk+δ ≤ d

′

k. Also, job k cannot be preceded in π by any job j with dj > d
′

k since
in that case both jobs would be one time and π is not as per previous theorem.
Hence the result follows.

This leads to a dynamic programming algorithm which we describe now. Let
jobs be agreeably weighted and numbered in EDD order. Let pk = maxnj=1 pj. By
the last theorem it follows that there is an optimal schedule in which (i) jobs
1, 2, ..., k − 1, k + 1, ...k + δ is some order for some δ satisfying 0 ≤ δ ≤ n − k
are in front starting at time t;(ii)then we have job k with completion time

5

Ck(δ) = t +
∑
j≤k+δ pj ; (iii) followed by jobs {k + δ + 1, ..., n} is some or-

der starting at time Ck(δ). Let S(i, j, k) = {r : i ≤ r ≤ j; pr < pk} and
T (S(i, j, k), t) = the the total weighted tardiness for an optimal schedule for the
set of jobs S(i, j, k) starting at time t. The DP recurrence relation using the
last theorem is given by:

T (S(i, j, k), t) = min
δ

[T (S(i, k+δ, k′), t)+wk max[Ck′(δ)−dk′ , 0]+T (S(k′+δ+1, j, k′), Ck′(δ))

where k′ satisfies the relation pk′ = max{pj : j ∈ S(i, j, k)} and Ck′(δ) = t +∑
j∈S(i,k+δ,k′) pj . Basis cases are: T (φ, t) = 0;T ({j}, t) = wj max[t+pj−dj , 0].

The number of these set of the form S(i, j, k) is O(n3). There are no more than
P =

∑n
j=1 pj ≤ npmax values of t that we need to consider. Hence the algorithm

is O(n4P) = O(n5pmax). Hence we have a pesudopolynomial algorithm for this
problem.

0.1.1 FPTAS for T :

Let T ∗ = minπ
∑n
j=1 Tj(π);Tmax = minπ maxj Tj(π);TEDD =

∑n
j=1 Tj(EDD).

It is easy to show that:

Tmax ≤ T
∗ ≤ TEDD ≤ nTmax

Let T (S.t) denote the maximum total tardiness for a subset S of jobs starting
at time t. For any given set S there is an easily computed time t∗ such that

T (S, t) =

{
0
> 0

t ≤ t∗

t > t∗

Moreover, it is easy to show that T (S, t∗ + ∆) ≥ ∆ for ∆ ≥ 0. Hence, we
need compute T (S, t) only for t∗ ≤ t ≤ nTmax. Hence we can replace in the
dynamic programming algorithm P by nTmax and hence get an algorithm whose
complexity is O(n5Tmax).

Easier instance: Replace pj by p′j =
⌊pj
K

⌋
K ≤ pj < p

′
j +K. Let T ′π denote

total tardiness for the optimal schedule π for {p′j , dj} [or equivalently 1
K
T ′A be

total tardiness for the optimal schedule for {
⌊pj
K

⌋
,
dj
K
}— note that the optimal

schedule for both of these instances is the same since the data are multiples of
each other]. It is easy to see that:

T ′π ≤ T
∗ ≤ Tπ < T

′
π +K

n(n+ 1)

2
≤ T ∗ +K

n(n+ 1)

2

Hence, we have:

Tπ − T
∗ ≤ K

n(n+ 1)

2
≤ ǫTmax ≤ ǫT

∗

6

if we set K = 2ǫ
n(n+1)Tmax. Hence, Tπ ≤ (1 + ǫ)T ∗. If we solve the problem

{
⌊pj
K

⌋
,
dj
K
}, time bound is O(n5 Tmax

K
) = O(n7 1

ǫ
). Hence we have FPTAS for

this problem.
References:

1. A Pseudopolynomial Algorithm for Sequencing Jobs to Minimize Total
Tardiness, by E. Lawler, Annals of Discrete Mathematics, 1 (1977),
pp. 331-342

A Fully Polynomial Approximation scheme for the Total Tardiness Prob-
lem, by E. Lawler, O.R. Letters, 1, #6, 1982, pp. 207-8.

Minimizing Total Tardiness on One Machine is NP-hard, by J. Du and
J.Y.T. Leung, Mathematics of Operations Research, 15, (1990), pp.
483-495.

3-D Matching:
Input: Given three disjoint sets W,X, Y with |W | = |X| = |Y | = q, a subset

S ⊆W ×X × Y .
M ⊆ S is called a three dimensional matching [(w1, x1, y1) ∈M, (w2, x2, y2) ∈

M] ⇒ [w1 �= w2;x1 �= x2; y1 �= y2]. Size of M is the number of triplets in M .
Question: Is there a matching M of size equal to q?

Theorem 7 3-D Matching is NP-complete. [Pages 50-53 in Garey-Johnson
Book]

3-PARTITION:
Input: A set S with |S| = {x1, x2,, x3n} of numbers [possibly same num-

ber repeated many times].
Question: Can we partition S into S1, S2, ..., Sn with |Sj | = 3 for j =

1, 2, ..., n and
∑
i∈Sj
xi =

∑
3n

i=1
xi

n
for all j = 1, 2, ..., n?

The particular case that is interesting is (still NP-complete) is when B
4 <

xi <
B
2 where

∑3n
i=1 xi = nB. In this case each Sj must contain exactly 3

elements to add up to B. [This is where the name comes from.]

Theorem 8 3-PARTITION is strongly NP-complete [i.e. NP-complete even if
the data are polynomially bounded when expressed in unary.] [Pages 96-103 in
Garey-Johnson Book]

7

