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Abstract

We derive a lower bound for the optimal fidelity for deterministic cloning a set of n pure states. In connection with states
estimation, we obtain a lower bound about average maximum correct states estimation probability. q 2000 Published by
Elsevier Science B.V.
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w xQuantum no-cloning theorem 1,2 has prohibited
cloning and estimating an arbitrary quantum state
exactly by any physical means in a consequence of
linearity of quantum theory. The unitarity of quan-

Ž .tum theory does not allow to clone identify no-or-
thogonal states though orthogonal states can be

Ž . w xcloned identified perfectly 3,4 . However, clone
and estimation of quantum states with a limited
degree of success are always possible. Universal

Ž . w xquantum cloning machine UQCM 5–13 acts on
any unknown quantum state and produce optimal
approximate copies. This machine is called universal
because it produces copies that are state-independent.
State-dependent quantum cloning machines is de-
signed to clone states belonging to a finite set and

) Corresponding author.
Ž .E-mail addresses: cfli@ustc.edu.cn C.-F. Li ,

Ž .gcguo@ustc.edu.cn G.-C. Guo .

may be divided into two main categories: determinis-
w x w x w xtic 14,15 , probabilistic 16–19 and hybrid 20 .

Deterministic state-dependent cloning machine gen-
erates approximate clones with probability 1. Deter-
ministic exact clone violates the no-cloning theorem,
thus perfectly clone must be probabilistic. Probabilis-
tic quantum cloning machines can clone states per-
fectly, though the success probability cannot be unit
all the time. It is shown that a set of non-orthogonal
states can be probabilistically cloned if and only if
the states are linearly independent. Hybrid clone
interpolates between deterministic and probabilistic

Ž .ones, that is, the copies not exact are better than
those in deterministic clone, but the success probabil-

Ž .ity less than 1 is greater than probabilistic exact
clone. Universal quantum states estimation were con-

w xsidered in Ref. 21,22 , given M independent realiza-
w xtions. What’s more, we 23 have discussed general

states discrimination strategies for state-dependent
system.
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Optimal results for two-state deterministic clone
w xhave been obtained in Refs. 14,15,20 . In this Letter

we consider deterministic clone for a set of n pure
: :states c ,is1,2, . . . ,n . When c are non-or-� 4i i

thogonal, they cannot be cloned perfectly. What we
require is that the final states should be most similar
as the target states, that is, the fidelity between the
final and target states should be optimal. We derive a
lower bound for the optimal fidelity of the cloning
machine. Applying it to states estimation, we obtain
the lower bound about average maximum correct
identification probability in deterministic states esti-
mation.

A quantum state-dependent cloning device is a
quantum machine which performs a prescribed uni-
tary transformation on an extended input which con-
tains M original states in system A and NyM
blank states in system B with N output copies. The
unitary evolution transfers states as follows

M NyM: :U c S s a , 1: Ž .Bi iA

M : :where c s c m . . . m c are the M orig-:i i i1 MA
NyM: :inal states, S are the blank states and a iB

are the output cloned states. The n=n inter-inner-
Ž . 1products of Eq. 1 yield the matrix equation

ŽM . ˜X sX , 2Ž .
Ž M .˜ <where n = n matrices X s a a , X² :i j

M
<s c c .² :i j

We require a figure of merit to characterize how
N:closely our copies a resemble exact copies c .:i i

MDenoting the priori probability of the state c by:i

h , one interesting measure of the final states is thei
w xglobal fidelity introduced by Bruß et al. 14,15 ,

which is defined formally as
n

2NFs h a c . 3:² Ž .Ý i i i
is1

As a criterion for optimality of the state-dependent
cloner, the unitary evolution U should maximize the

1 We notice the preserving inner-product property of unitary
: : :transformation, that is, if two sets of states f , f , . . . , f� 41 2 n

˜ ˜ ˜ ˜² : ²and f , f , . . . , f satisfy the condition f Nf s f N: : :� 41 2 n i j i

˜ ˜: :f , there exists a unitary operate U to make U f s f :j i i
Ž .is1,2, . . . ,n .

:global fidelity F of n final states a with respecti
Nto the perfect cloned states c . We focus here on:i

the global fidelity since it has an important interpre-
w xtation in connection with states estimation 20 .

Now the remained problem is to find the maxi-
mum value of the fidelity F, which means optimal
clone. It is equivalent to the problem of maximizing

Ž .F under the condition of Eq. 2 . This problem is a
nonlinear programming and fairly difficult to solve.
Nevertheless a lower bound of the optimal fidelity
could still be derived by adopting an auxiliary func-
tion FX, which is defined as

n
X NF s h c Na . 4² : Ž .Ý i i i

is1

Such function also describes how closely our output
copies resemble exact copies. There exists a bound

X Ž Ž ..between F and F see below, inequality 9 , there-
fore a bound for F may be obtained by optimizing
FX.

:We find that the optimal output states a musti

lie in the subspace spanned by the exact clones
Nc . This conclusion may be easily come to with:i

Žthe method of Lagrange Multipliers please refer to
w x .14,15 , where ns2 and here we omit the proof.

Ž .:If a set of states a fulfil Eq. 2 , that is,˜ i
Ž .M ˜ <X sXs a a , there must exist a unitary² :˜ ˜i j

: :transformation V satisfies V a s a , thus we can˜ i i
X :vary V to optimize F with chosen states a .˜ i

N N � 4Suppose c Na sl c Na with l g "1² : ² :i i i i i i
Žin the optimal situation the determination of l willi

. Xbe shown in later part , the optimal F is

n
X X N :F smax F smax h l c V a . 5² Ž .˜Ýopt V V i i i i

is1

:Choose n orthogonal states x which span ai
Nspace HH and the space spanned by c is a:i

2 n N:subspace of HH . Set a sÝ a x , c s::˜ i js1 i j j i

2 NWe consider space c ,is1,2, . . . ,n may be a subspace:� 4i

:of HH since c may be linear-dependent and cannot span ai

n-dimensional Hilbert space.
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n :Ý b x on the orthogonal bases x , is:js1 i j j i

1,2, . . . ,n, we get
X qF smax tr hlBVA smax tr VOŽ . Ž .opt V V

q's tr O O , 6Ž .
Žw xwhere As a , Bs b , hsdiag h ,h , . . . ,i j i j 1 2

. Ž . qh , lsdiag l ,l , . . . ,l , OsA hlB. We haven 1 2 n

used the freedom in V to make the inequality as tight
w xas possible. To do this we have recalled 24,25 that

q'max tr VO s tr O O , where O is any operatorŽ .V

and the maximum is achieved only by those V such
that

in q'VOse O O , 7Ž .
where n is arbitrary. Generally, we choose ns0.

As we require above, l should satisfyi
N :l c V a G0. This condition can be represented² ˜i i i

q² :as x lBVA x G0, which means the diagonali i

elements of matrix lBVAq should be positive. Since
� 4l g "1 , a simple method to determine l is toi i

enumerate the 2 n possible results of l s
Ž .diag l ,l , . . . ,l and verify which one fulfils1 2 n

:above inequality. With a chosen basis x , matrixi
Ž .q MA, B can be given by equations A AsX and

Ž .q NB BsX respectively, V can be represented with
parameters l , thus above postcalculation methodi

can determine matrix l and then give the maximum
X Ž .F . According to Eq. 6 , we obtain a tight upperopt

bound for the function FX,

X Ž .q M(F F tr B lhX hlB . 8Ž .

The fidelity F of the cloning machine is con-
strained by the following inequality

n n
2NFs h a c h:²Ý Ýi i i iž / ž /

is1 is1

2n
2XNG h a c s F , 9:² Ž . Ž .Ý i i iž /

is1

Nwhere the equation is met if and only if a c :² i i

are constant. Obviously F is not always optimal
even if FX is optimal. However optimal F should be
greater than or equal to FX 2

. When ns2 andŽ .opt
Ž .h sh , equation in Ineq. 9 is satisfied and gives1 2

the optimal results, which has been provided in Refs.
w x14,15,20 .

State-dependent clone has a close connection with
states estimation in the limit as N™`. Given infi-
nite copies of n non-orthogonal states, we can dis-
criminate them exactly with probability 1. On the
other hand, if we can discriminate n states, we can
obtain infinite copies. There are two ways in which
an attempt to discriminate between non-orthogonal
states; it can give either an erroneous or an inconclu-

w xsive result 23 . In the following we will consider a
strategy without inconclusive results using above
results in the limit as N™`. In fact, since the

:optimal output states a lie in the subspace spannedi
N Ž .by the exact clones c , Eq. 1 may be rewritten:i

as

n
M NyM N:U c S s c c , 10: : Ž .Ýi i j j

js1

N Nwhere c s c N a . If N™ `, c ,² : :½i j j i j

4js1,2, . . . ,n are orthogonal. After the evolution,
`the cloning system is measured and if c is ob-:j

Mtained, the original state is estimated as c . The:j
2

states estimation is correct with probability cii

when js i. If j/ i, errors occur with probability
2 Ž .Ý c . The inter-inner products of Eq. 10 givej/ i i j

the matrix equation in the limit N™`,

X ŽM .yEEqs0, 11Ž .

w xwhere Es c . The diagonal elements is corre-i j

sponding to the probabilities of correct states estima-
tion while non-diagonal elements to those of error.
This equation describes the bound between the maxi-
mum probabilities of correct discrimination and those
of incorrect one. In fact, this result is a special case

w x w xof that we have derived in 23 . In Ref. 23 , we have
consider two possible ways in which an attempt to
discriminate between non-orthogonal states can fail,
by giving either an erroneous or an inconclusive
result. Above strategy just gives an erroneous result
with some probability. Our principal result in Ref.
w x23 is the matrix inequality which prescribes the
bound among the probabilities of correct, error and
inconclusive discrimination results. Such bound may
have intriguing implications for quantum communi-

w xcation theory and cryptography 26 since it offers a
potential eavesdropper increased flexibility by a
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compromise between inconclusive and erroneous re-
sults.

An important optimality criterion of the states
estimation is the average maximum correct probabil-

2 3ity, that is, PsÝ h c sF in the limit N™` .i i i i
NIn this situation c are orthogonal, thus matrix:j
Ž . Ž .Bs I . Applying Eqs. 8 and 9 , we obtainn

22 Ž .M(Ps h c G tr lhX hl . 12Ž .Ý ž /i i i
i

Such F is not always optimal bound of the average
maximum probability of correct states estimation,
however, the optimal one is always greater than

2ŽM .(tr lhX hl .ž /
We note that above bound about F and P have

the meaning in average. They describe the optimality
approach to the final states we can reach in average
of the n initial states and does not mean the best for
each initial state. However, since we do not know
which one the initial state is in the clone or estima-
tion process, such average may be the most impor-
tant value to describe the efficiencies of cloning
Ž .estimating machines.

In summary, we have derived a lower bound for
the optimal fidelity for the state-dependent quantum
clone. In connection with states estimation, we ob-
tained the matrix inequality which describes the
bound between the maximum probabilities of correct
discrimination and those of incorrect one. A lower
bound about average maximum probability of correct
identification has also been presented. Our results
give some bounds which the optimal cloner and
states estimation can be better than in average, how-
ever, we have not found a limit which optimal cloner

3 It is the reason why we choose the definition of F as that in
Ž .Eq. 3 .

can reach at most. It is still an open question needed
to be explored.
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