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We investigate fidelity for the quantum evolution of a Bose-Einstein condensate �BEC� and reveal its general
property with a simple two-component BEC model. We find that, when the initial state is a coherent state, the
fidelity decays with time in the ways of exponential, Gaussian, and power law, depending on the initial
location, the perturbation strength, as well as the underlying mean-field classical dynamics. In this case we find
a clear correspondence between the fast quantum fidelity decay and the dynamical instability of the mean-field
system. With the initial state prepared as a maximally entangled state, we find that the behavior of fidelity has
no classical correspondence and observe an interesting behavior of the fidelity: periodic revival, where the
period is inversely proportional to the number of bosons and the perturbation strength. An experimental
observation of the fidelity decay is suggested.
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I. INTRODUCTION

The investigation of coherent manipulation of the quan-
tum state of matter and light has provided insights in to many
quantum phenomena, in particular, in quantum information
processes �1�. The realization of Bose-Einstein condensation
�BEC� in dilute gases has provided a different tool for such
investigations �2�. In the other aspect, the instability issue of
Bose-Einstein condensation �BEC� has been constantly ad-
dressed for its crucial role in the control, manipulation, and
even future application of this newly formed matter. Dy-
namical instability �3�, Landau or superfluid instability �4�,
modulation instability �5�, and quantum fluctuation instabil-
ity �6� have been discussed thoroughly. It is found that insta-
bility may break the coherence among the atoms and lead to
collapse of BEC �7�.

However, an important issue is still missing, namely, the
sensitivity of the quantum evolution of a BEC with respect to
a perturbation from the controlling parameters, or from the
outer environment. This instability is distinguished from the
instability mentioned above in that the perturbation here is
from the outer environment rather than from the inner of the
system. It can be depicted by the so-called fidelity, or the
Loschmidt echo function, defined as the overlap of two states
obtained by evolving the same initial state under two slightly
different �perturbed and unperturbed� Hamiltonians �8,9�.
This issue is very essential for coherent manipulation of BEC
as well as for future application of BEC to quantum infor-
mation and quantum computation �10,11�.

In this paper, we discuss this issue by considering a two-
component BEC trapped in a harmonic potential �12�, sub-
ject to a periodic coupling �successive kicks� between the
two components. This is a rather general model containing
rich dynamical behavior as we show later; with a constant

coupling it is the BEC system proposed recently to generate
the entangled state for quantum conputation �11�. Taking this
simple model, for example, we investigate the new instabil-
ity of BEC and reveal its general property. We find that,
when the initial state is a coherent state, the fidelity decays
with time in the ways of exponential, Gaussian, and power
law, depending on the initial location, the perturbation
strength, as well as the underlying mean-field classical dy-
namics. In this case we find clear evidence for the correspon-
dence between the fast quantum fidelity decay and the dy-
namical instability of the corresponding mean-field system.
This fact reveals the quantum essence of the dynamical in-
stability in the mean-field treatment of BEC. With the initial
state prepared as a maximally entangled state, we find the
behavior of fidelity decay has no classical correspondence
and observe an interesting behavior of the fidelity: periodic
revival, where the period is inversely proportional to the
number of bosons and the perturbation strength. We finally
suggest an experimental scheme to observe the fidelity decay
with BEC and show that the fidelity instability �fast decay�
may lead to a fadeaway of the inference pattern of recent
experiments �13�.

The paper is organized as follows. In Sec. II we give the
physical model. In Sec. III we give the analytic solution to
the classical system and plot its phase space. In Sec. IV we
discuss the fidelity for the quantum evolution of the coherent
states. In Sec. V we discuss the fidelity for the quantum
evolution of the entangled states. In Sec. VI we give our
conclusions and suggest an experimental scheme for observ-
ing the fidelity decay.

II. PHYSICAL MODEL

We consider that cooled 87Rb atoms in a magnetic trap are
driven by a microwave coupling into a linear superposition
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of two different hyperfine states, F=1, mF=−1 and F=2,
mF= +1. A near resonant pulsed radiation laser field is used
to couple the two internal states. It is useful in this case to
consider the Hamiltonian in a rotating frame, where the laser
field is constant over a time of pulse. The total density and
mean phase remain constant during the condensate evolu-
tion. Within the standard rotating-wave approximation, the
Hamiltonian describing the transition between the two inter-
nal states reads

Ĥ =
�

2
�â1

†â1 − â2
†â2� +

g

4
�â1

†â1 − â2
†â2�2 +

K

2
�T�t��â1

†â2 + â2
†â1� ,

�1�

where �T�t� represents �n��t−nT�, K is the coupling strength
proportional to the laser field. Here we suppose that the laser
field used to couple the two states is only turned on at certain
times of a period T. â1 , â1

† , â2, and â2
† are boson annihilation

and creation operators for the two components, respectively.
K=��R, g= �2��2 /m���2a12−a11−a22�, �=−�
+ �4N��2 /m���a11−a22�. In the above parameters, �R is the
Rabi frequency; aij is the s-wave scattering amplitude; � is
the detuning of lasers from resonance, very small and negli-
gible in our case; N is the atom number; m is the mass of
atom; � is a constant of order 1 independent of the hyperfine
index, relating to an integral of equilibrium condensate wave
function �14�.

Writing the above Hamiltonian in terms of the SU�2� gen-

erators �15�, L̂x= �â1
†â2+ â2

†â1� /2, L̂y = �â1
†â2− â2

†â1� /2i, L̂z

= �â1
†â1− â2

†â2� /2, we have Ĥ=�L̂z+gL̂z
2+K�T�t�L̂x. The three

angular momentum operators satisfy the Heisenberg equation

i�d /dt�L̂i= �L̂i,Ĥ� �i=x ,y ,z�, and �L̂x , L̂y�= iL̂z with cyclic
permutation. The Planck constant is set to be unit here and in
what follows. The Floquet operator describing the quantum
evolution in one period is

Û = exp�− i��L̂z + gL̂z
2�T�exp�− iKL̂x� . �2�

The Hilbert space spanned by the eigenstates of L̂z , �l� with
l=−L, −L+1,…, L, where L=N /2. The above system dem-
onstrates rich dynamical behaviors, and will degenerate to

the quantum kicked top model for some specific choice of
the parameters �16�. As in the kicked top model, an effective
Planck constant can be introduced, �eff=1/L, which will be
written as � for brevity.

III. CLASSICAL MOTIONS

Before going to the study of the quantum evolution of the
above system and demonstrating the decay of the Loschmidt
echo function under a slight perturbation on the Hamiltonian,
we first study the classical dynamics of the system in the
absence of external perturbation. Later we will show its con-
nection to the quantum fidelity instability

The system considered has a classical counterpart in the
limit N→�, where N is the total number of the atoms, de-
scribing a spin moving on a Bloch sphere with Si= �1/L�
	�L̂i� �i=x ,y ,z�. The classical Hamiltonian takes the form
H=�Sz+gcSz

2+K�T�t�Sx, where gc=gL. Their motions are

governed by Ṡi= �Si,H�cl �i=x ,y ,z�, with relation �Sx ,Sy�cl

=Sz and cyclic permutation. The above equations give the
motion of the center of a coherent quantum wave packet
ignoring the quantum fluctuation, equivalent to the mean-
field Gross-Pitaevskii �GP� equation with a time-dependent
potential. Technically, to obtain the mean-field classical
model, we need to focus on the Gross-Pitaevskii state
�
gp�= �1/	N!��a1â1

†+a2â2
†�N�vac�. By computing the expec-

tation value �Ĥ�= �
gp�Ĥ�
gp�, one obtains the mean-field

Hamiltonian Hmf = �Ĥ� /N in the limit N→�. The mean-field
Hamiltonian will give the classical dynamics discussed
above.

The classical motion for one period can be solved analyti-
cally, with the free evolution between two consecutive kicks
corresponding to an angle ��+2gcSz�T rotation around the Sz

axis, that is

S�z = Sz, �3�

S�x = Sxcos�� + 2gcSz�T − Sysin�� + 2gcSz�T , �4�

FIG. 1. Periodic snapshot of the orbits for �=T=gc=1, K=2,
where the x axis � is the azimuthal angle. It shows one big island
and four small islands. Inside the islands motions are stable, outside
the islands motions are mainly unstable or chaotic.

FIG. 2. Contour plot of the fraction of chaotic motions for �
=T=1.
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S�y = Sxsin�� + 2gcSz�T + Sycos�� + 2gcSz�T . �5�

The periodic kick added at discrete time nT corresponds to
an angle K rotation around the Sx, that is

S�x = Sx, �6�

S�y = Sycos�K� − Szsin�K� , �7�

S�z = Sysin�K� + Szcos�K� . �8�

If initially we have a small deviation ��Sx ,�Sy ,�Sz�, dur-
ing one periodic evolution the deviation will be magnified,
��S�x ,�S�y ,�S�z�†=D � ��Sx ,�Sy ,�Sz�†, where the tangent
map takes the form, with �= ��+2gcSz�T, 
=K,

D�Sx,Sy,Sz� = 
cos � − sin � − 2gcTSxsin � − 2gcTSycos �

sin � cos 
 cos � cos 
 − sin 
 + cos 
�2gcTSxcos � − 2gcTSysin ��
sin � sin 
 cos � sin 
 cos�K� + sin�K��2gcTSxcos � − 2gcTSysin ��

� .

Classically, there are two types of motion, classified by
magnification of initial deviation: If the magnification is ex-
ponential in time, the motion is unstable and chaotic; other-
wise, it is stable. In the stable case, the largest Lyapunov
exponent, defined as �
=limn→��1/n��nln����S�x ,�S�y ,�S�z�� / ���Sx ,�Sy ,�Sz���,
tends to zero. For the unstable case, the exponent is positive.
In Fig. 1, we plot the snapshots of the orbits at times of
multiple period and get the Poincaré section of the phase
space for a pair of variables �Sz ,��, i.e., z-component spin
and the azimuthal angle. It shows one big island and four
small islands. Inside the islands motions are stable, outside
the islands motions are mainly unstable or chaotic. The phase
structure changes with the parameters. To give an outline
picture, we make a large numerical exploration on the pa-
rameters �K ,gc�. For each pair of parameters, we choose a
few thousand initial points randomly on the phase space and
then trace their orbits and judge their stability by Lyapunov
exponents, then we make statistics on the fraction of the
unstable orbits. The results are plotted in Fig. 2. As seen, the
integrable cases �all orbits are stable with zero Lyapunov
exponents� are the vertical line gc=0 and horizontal lines
K=n� with integer n, implying that both nonlinearity and
the kick are essential in inducing chaos. When K is an odd
multiple of �, the situation is interesting where all orbits
bounce between two points separately, corresponding to a
phenomenon called the antiresonance case as discussed in
our recent paper �7�. Near these strict integrable regimes, the
system shows the near-integrable property that almost all or-
bits are stable except for tiny chaotic layers. In the dark
regime of Fig. 2 the system may show strong nonintegrabil-
ity that the phase space is full of chaotic orbits. In the tran-
sition from the integrable regime to the fully chaotic regime,
the phase space is the mix of regular orbits and chaotic orbits
as shown in Fig. 1. We call it the regime of the mixed case.

IV. FIDELITY FOR QUANTUM COHERENT STATES

The outer perturbation is mimicked by a small change on
the interaction parameter or in the coupling strength, etc.

Without losing generality, here we suppose that perturbation
is applied on the coupling, i.e., a small perturbation leads to
the change of the coupling strength like K→K+�. With de-
noting the unperturbed Hamiltonian by H, the perturbed
Hamiltonian is written as H�=H+�V. The corresponding

evolution operator is denoted by Û�.
To investigate the influence of the perturbation on the

quantum evolution, we need to trace the temporal evolution
of the fidelity M�t�= �m�t��2, where m�t� is the Loschmidt
echo defined as

m�t = nT� = ��0��Û�
†�n � �Û�n��0� , �9�

with ��0� as the initial state. Fast decay of the fidelity means
rapid loss of the information during quantum evolution in
presence of outer perturbation. In this section we set the
initial state of the BEC ��0� as a coherent state, centered at
sphere with polar angle � and azimuthal angle �,

��0� = ��,�� 
 e�*L+−�L−�− L�, with � =
� − �

2
e−i�.

�10�

We discuss fidelity decay in three typical situations, in which
the corresponding mean-field classical system is fully cha-
otic, near-integrable, and mixed, respectively.

For the parameters K=2, gc=4, the phase space is fully
chaotic. Because of the ergodicity of the chaotic orbits, fidel-
ity decay is expected to be independent on the initial condi-
tion. However, it strongly depends on the perturbation
strength. As we see in Fig. 3, for a small perturbation, fidelity
shows a slow Gaussian decay,

M�t� � exp�−
gnK�E�

�d
�2t2� , �11�

where �=� /�, gn=2 is the number of classical orbits with
identical action, d= �2L+1� /2� is the mean density of states,
and K�E� is the classical action diffusion constant, K�E�
=�0

�dt�V�r�t��V�r�0��� with V�r�t�� evaluated along a trajec-
tory.
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With increasing perturbation strength, one meets a pertur-
bation border �p at which the typical transition matrix ele-
ment of perturbation between quasienergy eigenstates be-
comes larger than the average level spacing �17�,

�p � �	 ln�2L + 1�
2K�E��2L + 1�

� �/	2L + 1. �12�

Above the border the fidelity shows the exponential decay
�17,18�; for this case one should distinguish between two
regimes, namely, �i� the Fermi-golden-rule �FGR� regime for
relatively small �, with an exponential decay

M�t� � e−�t, �13�

where �=2�2K�E� �17�; and �ii� the Lyapunov regime for
relatively large �, in which the fidelity decay as e−�t for sys-
tems whose underlying classical dynamics has a constant
local Lyapunov exponent � �19�. When the classical system
has non-negligible fluctuation in the finite-time Lyapunov
exponent, the fidelity has the following decay at large
enough � �20,21�:

M̄�t� � e−��t�t, with ��t� = −
1

t
ln� �x�t�

�x�0�
�−1

, �14�

where �x�t� indicates distance in phase space and the average
is performed over phase space. Figure 3 shows typical fidel-

ity decay for the three cases and detailed parameters are in-
dicated in the caption.

As we choose parameters as K=2, gc=0.2, the classical
system is nearly integrable where the phase space is full of
periodic and quasiperiodic orbits. We found Gaussian decay
for the fidelity of single initial coherent states, with a strong
dependence of decaying rate on the location of the initial
coherent states. The Gaussian decay may be followed by a
power-law decay 1/ t� with ��1 for the large time scale.
However, after averaging over the whole phase space, we
find that the fidelity decay can be well fitted by an inverse
power law 1/ t, as shown in Fig. 4. In this case, for the
quantum evolution of initial coherent state BEC, high fidelity
can be expected, because the fidelity has a slow power-law
decay on average.

Now we turn to the mixed case, which is more compli-
cated than the previous two cases. It is usually expected that
fidelity decay of initial coherent states lying in regular re-
gions would be similar to that in a nearly integrable system,
and that from chaotic regions they would be similar to that in
a chaotic system. However, we find that this naive picture is
not exact. Let us take the mixed system with the parameters
the same as in Fig. 1 for an example and first discuss initial
coherent states lying within the regular regions. We find that
fidelity of such states has quite a slow decay, contrary to
what is shown in the upper panel of Fig. 4. In particular, for
initial coherent states lying in the largest regular region, fi-
delity remains close to 1, even at t=200, as shown in Fig. 5.
Note that the quantum perturbation strength characterized by
�=� /� has the same value in Figs. 4 and 5. This phenom-
enon cannot be explained by means of expanding the coher-

FIG. 3. �Color online� Fidelity decay in a classically chaotic
case, with K=2, gc=4, �=1, T=1. Upper panel: An example in the
perturbative regime with S=100, �=2	10−4, obtained from one
initial coherent state. The dashed curve is the theoretical prediction
in Eq. �11�. Lower panel: Two examples in the FGR and Lyapunov
regimes, respectively. In the FGR regime, S=200, �=3	10−3, and
an average is performed over 20 initial coherent states taken ran-
domly. The dashed line is the FGR decay. In Lyapunov regime, S
=500, �=1	10−2, with an average over 1000 initial coherent
states. The solid line is e−�t with �=� �t=6� in Eq. �14�.

FIG. 4. �Color online� Fidelity decay in a classically nearly in-
tegrable case, with K=2, gc=0.2, �=1, T=1, N=200, and �
=0.003. Upper panel: Fidelity of four randomly chosen initial co-
herent states, with the smooth solid curve being the Gaussian fit to
one of them. Lower panel: Averaged fidelity, with an average per-
formed over 50 initial coherent states chosen randomly.
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ent states in the eigenstates of the systems, as done in Ref.
�8� for angular momentum eigenstates in the system there,
since the values of the participation function of the coherent
states, defined by 1/ ��������0���4, are not small. Indeed, for
example, for the state giving the almost nondecaying fidelity
in Fig. 5, the participation function is larger than 22. We
mention that this phenomenon implies that quantum motion
in the regular region of a mixed system can be more stable
than that in a corresponding unperturbed �integrable� system.

In the above mixed system, fidelity of initial coherent
states coming from chaotic regions also exhibit unexpected
behaviors. For a chaotic system, �=0.3 belongs to the FGR
regime and the fidelity has the FGR decay Eq. �13� as shown
in Fig. 3. However, in the mixed system with �=0.3, the
fidelity of initial coherent states lying within the chaotic re-
gion has not only FGR decay, but also faster decays, even as
fast as the Lyapunov decay at the beginning time �see Fig. 5�.
It was found that typical decay of fidelity in this system is
either close to the FGR decay or between the � decay and
the Lyapunov decay.

In order to have a knowledge of the global situation of
fidelity decay in a mixed system, we show a contour plot for
M�t=200� in Fig. 6. This picture illustrates similar structure
of Fig. 1. The similarity can be understood from different
dispersion behaviors of the coherent-state wave packets start-
ing from regular regions and chaotic regions, respectively.
Compared to that in the regular region, in the chaotic region
the wave packets disperse much faster and soon become ex-
tended �for example� in the � representation. We then imag-
ine that the overlap of two states governed by slightly differ-
ent �perturbed and unperturbed� Hamiltonians may decay
fast with time. It means that the dynamical instability regime
of the classical system usually corresponds to the low fidelity
regime of the quantum system. On the other hand, inside the
islands �large or small� where the classical motions are dy-

namically stable with zero Lyapunov exponent, the fidelity
shows different behavior: The fidelity in the large island is
higher than that in the small islands. In the connected chaotic
region where the Lyapunov exponent has a certain positive
value, the fidelity may show different behaviors as shown in
Fig. 5. These facts on the other hand elucidate that fidelity
contains more information about the system under a pertur-
bation and therefore is a more general quantity to describe
the stability of the BEC.

V. FIDELITY FOR ENTANGLED STATES

In the above discussions we set the initial states as coher-
ent states. Actually, the quantum degenerate atomic gases is a
fertile ground for exploring applications in quantum informa-
tion, where the entangled state plays a crucial role. Discuss-
ing fidelity of the entangled state is of great interest and of
practical significance. Therefore in the following discussions
we assume a maximum entangled state or N-GHZ
�Greenberger-Horne-Zeilinger� state is generated initially
�11�, which can be written as follows for our N-bosons sys-
tem:

�GHZ�N =
1
	2
� â1

†N

	N!
+

â2
†N

	N!
��0� =

1
	2

��− L� + �L�� . �15�

We want to discuss the fidelity for its quantum evolution.
Before presenting our numerical results, we make some

simple deductions and give a theoretical prediction for the
fidelity behavior of the entangled state. Supposing the per-
turbation is very small, we can ignore the term like

�L��Û�
†�n � �Û�n�−L� �this assumption is more suitable for the

near-integrable case, where the evolution of the quantum
states is expected to be localized due to invariant tori�. Then
the Loschmidt echo function for the GHZ state may simply
be expressed as the sum of the echo functions of the Fock
states �−L� and �L�, namely,

FIG. 5. �Color online� Fidelity decay in the mixed system whose
classical phase space structure is shown in Fig. 1. L=500 and �
=0.0006, so that �=� /�=0.3. The almost nondecaying solid line is
the fidelity of an initial coherent state lying within the largest regu-
lar region. The other two solid curves, one close to the FGR decay,
the other first having a Lyapunov decay then an approximately FGR
decay, correspond to the fidelity of two initial coherent states lying
in the chaotic region of the classical system.

FIG. 6. Contour plot of the fidelity M�t� at t=200, for K=2,
gc=�=T=1, N=1000, and �=0.0006, with the classical phase
space possessing a mixed structure shown in Fig. 1.
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m�GHZ��t� �
1

2
m�L��t� +

1

2
m�−L��t� . �16�

If the difference between the echo functions of the two Fock
states ��m�L��t��− �m�−L��t��� is large, the interference terms in
the fidelity expression of the GHZ state will be negligible,
the fidelity of the GHZ state will be approximate to the fi-
delity of one Fock state that has large absolute echo function,
showing a monotonous decrease with time. On the other
hand, if the echo functions of the two Fock states are com-
parable, the fidelity of the GHZ state will show an oscillation
between minimum 1

4 �m�L��t��− �m�−L��t��2 and maximum
1
4 �m�L��t��+ �m�−L��t��2. The period of this oscillation, denoted
by Tent, is determined by the relative phase between the echo
functions of the two Fock states.

In the nearly integrable case, the dependence of Tent on
the effective Planck constant � as well as on � can be esti-
mated as follows. In a uniform semiclassical approach, it has
been found that the phase of the fidelity of a coherent state is
roughly given by the quantity

�S �
�

�
�

0

t

dt�V�r�t��� �17�

with the value of V�r�t��� evaluated along the classical tra-
jectory starting at the center of the initial coherent state �19�.
Here �V is the perturbation, �S is in fact the action differ-
ence along two nearby trajectories starting at the same point
in the phase space of the two systems H and H0. In nearly an
integrable system, due to the quasiperiodicity of trajectories,
the integral on the right-hand side of Eq. �17� is approxi-
mately proportional to t at long time. Then, the phase differ-
ence for the fidelity of two initial coherent states centered at
different regions of the phase space, is proportional to �Lt.
Note that the Wigner functions of the two Fock states �L� and
�−L� occupy distant regions in phase space. Expanding the
two Fock states in coherent states, we find that the relative
phase of m�L��t� and m�−L��t� is approximately proportional to
�Lt as well, implying that Tent�1/ ��L�.

Our numerical simulations prove the above theoretical
predictions, as shown in Fig. 7. The periodic oscillation in
the upper panel of Fig. 7 is quite aninteresting phenomenon;
it indicates that the fidelity already decayed very low can
revive after a certain time duration. This type of fidelity be-
havior is a unique property for the entangled state.

In the lower panel of Fig. 7, we set a larger nonlinearity
parameter, gc=1, which falls into the mixed regime with the
phase space demonstrated in Fig. 1. We plot the temporal
evolution of fidelity for the two Fock states �−L� and �L�, as
well as for the GHZ state. We find that the behavior of the
fidelity of the GHZ state can be well fitted by a Gaussian
decay. Comparing this result with the coherent state case in
Fig. 5, we find a big difference. It reflects the pure quantum
property of the GHZ state.

To have a knowledge of the global situation of fidelity
decay for the GHZ states with respect to the system’s param-
eters, we calculate the fidelity for a wide range of parameters

as shown in Fig. 8. Comparing with the contour plot of clas-
sical dynamics in Fig. 2, we find no clear evidence for the
correspondence.

VI. CONCLUSIONS AND EXPERIMENTAL SUGGESTIONS

In conclusion, we have investigated the instability of a
BEC under an external perturbation. When the initial state is
a coherent state, the fidelity decay has a close relation to the
mean-field classical dynamics. This correspondence reveals
the quantum essence of the dynamical instability of the clas-
sical mean-field equation �GP equation� of BECs. As well
known, a BEC system is essentially a quantum many-body

FIG. 7. �Color online� Fidelity for the two Fock states and the
GHZ entangled state, with L=500, �=2	10−5, and K=2. The up-
per panel is with gc=0.2. Inset of upper panel: 100/Tent vs �L for
�L from 0.001 to 0.1, with L=50 �solid line� and L=100 �circles�,
showing the linear dependence of Tent on 1/�L. The lower panel is
for gc=1, in which the fidelity of the GHZ state can be well fitted
by a Gaussian decay.

FIG. 8. Contour plot of the fidelity M�t� at t=1500, with respect
to the parameters gc, K. The initial quantum states are the GHZ
entangled state.
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problem, governed by linear Schrodinger equation. It should
not be sensitive to small change in its initial condition. How-
ever, as the zeroth-order approximation �1/N�, the mean-
field GP equation surely has the dynamical instability char-
acterized by the sensitivity on a small initial condition. This
leaves a puzzle about the quantum source of the dynamical
instability. Our discussions provide an explanation to this
puzzle, that the dynamical instability of the GP equation is
the classical manifestation of the fidelity instability of the
original quantum system. This argument is strongly sup-
ported by our numerical calculations. We also discuss the
fidelity for the maximally entangled state and find a purely
quantum behavior without classical correspondence. We ob-
serve an interesting behavior of the fidelity: periodic revival,
where the period is inversely proportional to the number of
bosons and the perturbation strength. Our theoretical analysis
provide a good explanation for the above phenomenon.

This instability characterized by the fast fidelity decay
may lead to an observable phenomenon. Here we propose an
experiment to observe the fidelity decay. Let us consider
BECs �e.g., 87Rb� that are optically cooled and trapped and
are then transferred into a double-well potential. The double-
well potential can be created by focusing blue-detuned far-
off-resonant laser light into the center of the magnetic trap
�22�, or by deforming single-well optical trap into a double-
well potential with linearly increasing the frequency differ-
ence between the rf signals �13�. In both systems the inter-
ference between the two condensates is observed by
simultaneously switching off the magnetic or optical trap and

the laser-light sheet. To observe the fidelity instability due to
the internal dynamics, before switching off the traps, we ap-
ply near-resonant coupling fields to the condensates to
couple the two hyperfine states of 87Rb, e.g., F=1, mF=−1
and F=2, mF= +1 like in Ref. �12�, with a slightly different
strength in the two wells. The condensate in each well can
then dynamically convert between internal states. Then
switching off the traps and letting the two clouds of BEC
expand, our prediction of the fast decay of the system’s fi-
delity will lead to fadeaway of the inference pattern. This can
be understood from the formula I� ��1�1�2+ ��2�2�2
+2Re��1

*�2�1
*�2� with 1, 2 labeling the wells. Clearly, high

fidelity of the two internal states � corresponds to high vis-
ibility of the interference. Here we require that the wells be
deep, so that the total density remains relatively constant.
The atom number in each well is nearly equal. Small fluc-
tuations on the atom number does not essentially affect our
predictions since it may be regarded as another perturbation
source.
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