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Topological phases in pseudospin-1 Fermi gases with two-dimensional spin-orbit coupling
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The recent experimental realization of spin-orbit (SO) coupling for ultracold bosons and fermions opens
an exciting avenue for engineering quantum matter that may be challenging to realize in solid-state materials
such as SO-coupled pseudospin-1 fermions. While one-dimensional SO coupling for spin-1 bosons has been
experimentally realized, the generation of two-dimensional (2D) SO coupling and its topological properties are
largely unexplored. Here we propose an experimental scheme for realizing a 2D Rashba-type SO coupling in a
square lattice for pseudospin-1 Fermi gases. Because of the extended spin degree of freedom, many interesting
topological phases could exist without relying on lattice point group symmetries that are crucial in solid-state
materials. These exotic phases include triply degenerate points, quadratic band touching, a large Chern number
(C = 5) superfluid with five Majorana modes, triple-Weyl fermions, and so on. Our scheme can be generalized
to larger spins and provides a distinctive route for engineering topological quantum matter by utilizing large spin
degrees of freedom, instead of specific lattice symmetries.
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I. INTRODUCTION

Spin-orbit (SO) coupling, the interaction between spin and
orbital (e.g., momentum) degrees of freedom of a particle,
plays an important role in many topological phases of matter.
In ultracold atomic gases, synthetic SO coupling has been
realized by coupling atomic hyperfine ground states (denoted
as pseudospins, but sometimes abbreviated as spin if there
is no ambiguity) using Raman lasers that induce momentum
changes between different spin states. In particular, both (one-
dimensional) 1D and two-dimensional (2D) SO couplings
have been realized in experiments for pseudospin-1/2 bosons
and fermions and their distinct properties have been widely
studied [1–12].

Recently, 1D SO coupling for spin-1 bosons has also been
experimentally realized [13,14], which hosts some interesting
quantum phases [15–20]. Different from the electron’s spin-
1/2, the large number of available hyperfine states provide
a platform for studying fermionic atoms with integer pseu-
dospins such as pseudospin-1, which generally are difficult
to realize in solid-state materials. The existence of such ex-
tra spin states naturally poses two important questions: Can
important topological physics emerge from 2D SO-coupled
pseudospin-1 Fermi gases? If so, how can pseudospin-1 2D
SO coupling be realized in realistic experimental systems?

In this paper, we address these two important questions by
showing that many exotic topological phases can emerge from
a pseudospin-1 degenerate Fermi gas in a square optical lattice
with 2D Rashba-type SO coupling, which can be realized
with a simple laser setup. These topological phases originate
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from the coupling with the extra spin state in spin-1, instead
of certain lattice symmetries that dictate many topological
solid-state materials. Our main results are as follows.

(i) In the absence of Zeeman field to lift the degeneracy
of three pseudospin states at the center of the Brillouin
zone (BZ), there exists a single triply degenerate point in
the 2D single-particle band structure, which consists of two
linear and one flat bands. Three-dimensional triply degen-
erate points have been theoretically proposed in solid-state,
ultracold atomic, and optical systems with some experimental
evidences [21–29]. The 2D triply degenerate point here re-
sembles a Dirac point in graphene without the valley degree
of freedom [30]. A spin-tensor Zeeman field breaks the triple
degeneracy, leading to a quadratic band touching point due to
indirect second-order spin coupling. Quadratic band touching
points have attracted great attention recently due to their non-
linear dispersions [31–33] and many-body interaction-driven
quantum anomalous Hall ground states with time-reversal
symmetry breaking [31,32,34–37].

(ii) In the presence of attractive s-wave pairing interaction,
2D superfluids can become topological with large Chern
numbers up to ±5. The topological phase transition between
different phases can be accompanied with the band gap clos-
ing at (up to two) points with cubic band touching through
pairing and indirect spin coupling, yielding the largest Chern
number change of 6. The large Chern number topological
superfluid can host up to five Majorana edge states [38–40]
simultaneously at the boundary.

(iii) In a 3D superfluid with 2D SO coupling, each cubic
band touching point becomes two triple-Weyl nodes located
at ±kz due to the change of the effective chemical potential
through the kinematic energy ∼ k2

z . Multi-Weyl fermions
have attracted great attention due to their multiple monopole
charges and unusual transport properties in solid-state materi-
als [41–46].
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(iv) An experimental setup for realizing 2D Rashba-type
SO coupling for pseudospin-1 atomic gases is proposed based
on recently experimental success for realizing 2D SO cou-
pling for pseudospin-1/2 atoms [10].

(v) Extending the findings to a higher pseudospin s, we
show that a high-order band touching point at the order of
2s and 4s − 1 can exist for single-particle bands and pairing
superfluids, respectively.

II. HAMILTONIAN AND SINGLE-PARTICLE BAND
TOPOLOGY

We consider a Rashba-type SO-coupled pseudospin-1
Fermi gas confined in a square lattice with both vector (lin-
ear) and tensor (quadratic) Zeeman fields. The single-particle
Hamiltonian in the momentum space can be written as

H0 = −dxFx − dyFy + dz
(
I − 1

2 F 2
z

) + 1
2δV Fz + 1

4δT F 2
z , (1)

under the three spin basis {|1〉, |0〉, | − 1〉}, where dx =
2tso sin(ky), dy = 2tso sin(kx ), dz = 2t[cos(kx ) + cos(ky)], Fi

represent the spin-1 vector operators. They can be expressed
as [Fx]mm′ = √

2(δm−1,m′ + δm+1,m′ ), [Fy]mm′ = √
2i(δm−1,m′ −

δm+1,m′ ), and [Fz]mm′ = 2mδm,m′ (see Appendix A). δT and δV

denote the tensor and vector Zeeman fields. The experimental
scheme for realizing this Hamiltonian will be discussed later
in the paper. Hereafter we take t = tSO = 1 for simplicity of
the presentation.

When the vector Zeeman field δV = 0, the time-reversal
symmetry of the system is preserved. In this region, when the
tensor Zeeman field δT = ±8 or 0, one (at the � or M point)
or two (at X points) 2D triply degenerate points appear in
the band structure, each of which carries a topological charge
(winding number) −2. An example of the triply degenerate
point at � point for δT = 8 is plotted in Fig. 1(a). The low-
energy effective Hamiltonian around � is ∼ − (kyFx + kxFy)
up to some constants, which can be taken as a natural exten-
sion of the spin-1/2 Rashba SO coupling kyσx + kxσy (σi, i =
x, y, z are Pauli matrices).

The triple degeneracy at � for δT = 8 can be lifted by
varying δT and δV . When the time-reversal symmetry is still
preserved (i.e., δV = 0), the decrease of δT disappears from
the top band, leaving a quadratic band touching between two
bottom bands [Fig. 1(b)]. The physics around the quadratic
band touching point can be described by an effective Hamil-
tonian H� = −2kyFx − 2kxFy + (δT − 8)F 2

z /4, where two de-
generate spin states |1〉 and | − 1〉 at k = 0 are indirectly
coupled through |0〉. Near the origin k = 0, the effective
two-level Hamiltonian (up to the second order) becomes

HQBT = −2
(
k2

x − k2
y

)
σx − 4kxkyσy + 2

(
k2

x + k2
y

)
I (2)

for two touched bands. Such quadratic band touching has a
winding number −2 .

The Hamiltonian (2) is similar to that for a quadratic
band touching in checkerboard (C4) and Kagome (C6) lattices,
which requires time-reversal symmetry and the correspond-
ing point group symmetry to be topologically robust [32].
In contrast, the quadratic band touching in our model is
only protected by time-reversal symmetry and robust to the
breaking of C4 rotational symmetry because it stems from the
indirect coupling induced by extra spin degrees of freedom, as

FIG. 1. (a) A 2D triply degenerate point carrying −2π Berry
phase locates at � point for δT = 8 and δV = 0. A quadratic band
touching appears at X/M points for two upper bands. Inset shows
high-symmetry points in the BZ for a square lattice. (b) Two
quadratic band touchings located at � (between two lower bands) and
X/M (two upper bands) points for δT = 5 and δV = 0. (c) Coupling
scheme with/without superfluid pairing. The green line represents
SO coupling, which contributes a winding number −1. The dashed
yellow line represents the s-wave pairing, which does not contribute
any winding. The blue and red branches correspond to particles and
holes. (d) Phase diagram of Chern number for the lower band. The
circle and square denote the parameters for (a) and (b), respectively.

illustrated in Fig. 1(c). The green lines represent SO coupling
− sin(ky) + i sin(kx ), which contributes a winding ±1 at dif-
ferent high-symmetry points. When two spins |1〉 and | − 1〉
are degenerate, their touching point would naturally possess
a winding number ±2 and exhibit quadratic band touching.
Nevertheless, due to the lack of point group symmetries in
its mechanism, the quadratic band touching here cannot be
split into several Dirac cones. Upon breaking time-reversal
symmetry through a vector Zeeman field δV , a gapped phase
with nontrivial Chern numbers for each band appears (see
Appendix B).

Hereafter we use the detunings δ±1 = δT ± δV for spin
states | ± 1〉 from |0〉, which are more relevant to realistic
experimental parameters. The single-particle phase diagram
for the lowest band is shown in Fig. 1(d). In the gapped
phase regions, the band Chern numbers are nonzero as long as
|δ+1| < 8 or |δ−1| < 8. More details about the single-particle
phase diagram are presented in Appendix B.

III. LARGE CHERN NUMBER 2D SUPERFLUIDS

We consider a two-body s-wave attractive interaction be-
tween Fermionic atoms. In experiments, the interaction be-
tween different spin states can be tuned by Feshbach reso-
nance [47,48]. Here we assume, without loss of generality,
that the interaction −∑

i U+1,0ni,+1ni,0 between spins |+1〉
and |0〉 is tuned to be dominant, where i = (ix, iy) is the
2D lattice-site index, n̂i,σ = ĉ†i,σ ĉi,σ is the particle number
operator and U+1,0 > 0 is the interaction strength.
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FIG. 2. (a, b) The phase diagrams of order parameter and Chern
number with respect to δ+1 and μ for δ−1 = 1. The Chern number
is summed over the hole branch and vanishes with the zero order
parameter. (c) Coexistence of a cubic band touching and a Dirac point
in BZ. δ+1 = −2, δ−1 = 1, and μ = −3. (d) Quasiparticle spectrum
with an open-boundary condition along the x direction. δ+1 = −4.5,
δ−1 = 1, and μ = −1.5.

Under the mean-field approach, the Bogoliubov–de
Gennes (BdG) Hamiltonian for the 2D superfluid can be
written as

H� = −dxFx ⊗ τI − dyFy ⊗ τz + dz
(
I − 2F 2

z

) ⊗ τz

+ (
δT F 2

z + δV Fz − μI
) ⊗ τz + (�sFs ⊗ τ+ + H.c.),

(3)

in the Nambu basis �k = (ĉk,+1, ĉk,0, ĉk,−1, ĉ†−k,+1, ĉ†−k,0,

ĉ†−k,−1), where μ is the chemical potential, τI and τi are the
identity matrix and Pauli matrices acting on Nambu space,
Fs = i(Fy + {Fy, Fz/2}), and the s-wave superfluid order pa-
rameter �s = (U+1,0/N0)

∑
k〈ĉk,+1ĉ−k,0〉 with N0 the number

of atoms in spin states | + 1〉 and |0〉. Despite that such a
pairing breaks time-reversal symmetry, the particle-hole sym-
metry P = τxK̂ is still preserved. The order parameter is self-
consistently determined by minimizing the thermodynamical
potential [49,50] and the corresponding phase diagram at
δ−1 = 1 is plotted in Figs. 2(a) and 2(b).

The coupling between different states in the above BdG
Hamiltonian is illustrated in Fig. 1(c), where the blue and
red branches denote particles and holes. The dashed yellow
lines are couplings through order parameter �s, which do not
contribute any winding. The highest-order band touching is
then cubic, which is given by the indirect coupling between
particles and holes at spin state | − 1〉. Moreover, different
types of band touching may appear at different high-symmetry
points at the same time. In Fig. 2(c), we show a gapless phase
with both cubic band touching at � and Dirac-type linear
touching at the M point.

In the numerical phase diagram of the 2D superfluid
[Figs. 2(a) and 2(b)], a large Chern number up to ±5 appears

FIG. 3. Triple-Weyl node in a 3D topological superfluid.
(a) Change of the 2D band Chern number with respect to k′

z due
to the change of the effective chemical potential μeff. Green square,
red disk, and yellow triangle denote a triple-Weyl node that locate
at � in the (kx, ky ) plane, a Weyl point at �, and a Weyl point at M,
respectively. (b) Plot of the triple-Weyl node in 2D BZ at k′

z = 1.26,
which shows cubic band dispersion along both kx and ky. (c) Surface
spectral densities and Fermi arcs in the ky-k′

z surface plane with
ω = 0. δ+1 = 2, δ−1 = 1, and μ = −1.4.

while the change of Chern number may reach 6 (from 1 to
−5), which is achieved through two cubic-band crossings. The
effective two-level Hamiltonian around a � cubic-band touch-
ing point is ∼ − (k3

y − 3k2
x ky)σx − (k3

x − 3kxk2
y )σy + (k2

x +
k2

y )σz . In the gapped region, multiple Majorana edge states
emerge for the large Chern number 2D superfluid. In Fig. 2(d),
we plot the band structure for a topological superfluid with
Chern number 5 under the open boundary condition along
x and periodic boundary condition along y. Clearly five
Majorana edge states appear at each edge in the superfluid
band gap.

IV. TRIPLE-WEYL NODES IN 3D SUPERFLUIDS

We consider a 3D superfluid with the same 2D SO coupling
and free dispersion along the kz direction. Because kz only
enters the Hamiltonian through the kinetic energy, we can
incorporate it by replacing the chemical potential μ in the
BdG Hamiltonian (3) with the effective chemical potential
μeff = μ − h̄2k2

z /(2m). For convenience, we use the coordi-
nate k′

z = (h̄/
√

2m)kz . An example of the change of the 2D
band topology with k′

z is shown in Fig. 3(a). At k′
z = 0, the 2D

Chern number is 3 for the chosen chemical potential μ. With
increasing k′2

z , μeff decreases, leading to band-gap closing at
different points and the change of Chern number, as shown
in Figs. 2(b) and 2(c). Such band-gap closing points yield
linear or multi-Weyl nodes in 3D momentum space. In total,
there are three types of band touchings at different k′

z and they
are labeled with differently colored shapes in Figs. 3(a) and
3(c). Unlike multi-Weyl nodes in electronic systems, here the
Weyl points are not protected by Cn point-group symmetry,
therefore we may have triple-Weyl nodes even though our
model itself exhibits only C4, instead of C6 symmetry [41].
Such a triple-Weyl node shows a cubic-band dispersion in the
kx-ky plane [Fig. 3(b)] and is linear along the kz direction
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FIG. 4. (a) Experimental scheme for implementing 2D Rashba-
type SO coupling in fermion atoms 40K using a standing wave E1x(z)

and two plane-wave E2(3)x(z) laser fields. The arrows indicate the
directions of corresponding beams and each beam is reflected by two
mirrors (dark gray lines). (b) Level diagram and optical coupling in
the hyperfine structure |F, m〉 of 40K atoms.

(see Appendix C). By keeping only the leading order, the
two-level low-energy Hamiltonian around the Weyl point is
∼ − (k3

y − 3k2
x ky)σx − (k3

x − 3kxk2
y )σy + k′

zσz up to some con-
stants, which is the same as that stabilized by the C6 point
group in topological semimetals [41].

To characterize the surface states and the triple-Weyl nodes
in Fig. 3(b), we calculate and plot the spectral density function
A(ω, k) = ImG(iω, k)/π at ω = 0 in Fig. 3(c) with an open
boundary condition along the x direction, where G(iω, k) is
the single-particle Green’s function. We also shift the BZ to
make all surface Fermi arcs visible. The pair of Weyl points
at M (yellow triangle) gives an isolated surface arc at ky = π .
The surface arc connecting � Weyl points (red disks) overlaps
with one of the three Fermi arcs connecting the � triple-Weyl
nodes (green square) at ky = 0, therefore the density is slightly
higher.

We remark that because the multi-Weyl nodes here do not
rely on the existence of point group symmetries Cn, they are
also robust to the breaking of C4 symmetry, which is preserved
by the system Hamiltonian. For electronic materials with
orbital degree of freedom, the highest order for a multi-Weyl
node is triple because it is stabilized through C6 symmetry,
which is the highest order allowed by classical crystalline
order. In contrast, a quadruple-Weyl or quintuple-Weyl node
can be found, in principle, in a spin-3/2 system.

V. FURTHER DISCUSSIONS

A. Experimental scheme for generating 2D SO coupling

We briefly illustrate the experimental proposal for imple-
menting 2D SO coupling in the Hamiltonian Eq. (1), which
could be considered as a natural generalization of the experi-
mentally realized 2D SO coupling for spin-1/2 atoms [10,51].
The scheme is presented using 40K atoms, but a similar setup
could apply to 173Yb [52,53] or 161Dy [54] atoms, which
have much less heating from Raman lasers. More details are
provided in Appendix D. Our proposal focuses on lattice
systems while the realization of the spin-orbit coupling in
free space [8,9,12] may enable the generalization and study
of these distinctive band touchings in free space.

The basic experimental setup is shown in Fig. 4(a). Two
counterpropagating Raman lasers (red) form standing wave
fields E1x = ẑE1x cos(k0x) and E1z = x̂E1z cos(k0z) along the

x and z directions, which also generate a spin-independent
square lattice V (r) = V0x cos2(k0x) + V0z cos2(k0z). As il-
lustrated in Fig. 4(b), the red standing wave and blue
plane wave E2x = ẑE2xeik0x, E2z = x̂E2zeik0z (or green plane
wave E3x = ẑE3xeik0x, E3z = x̂E3zeik0z) can induce a two-
photon Raman transition between | + 1〉 and |0〉 (or
|0〉 and | − 1〉). The resulting Raman coupling can be
written as ∼Mx(x, z)Fx + My(x, z)Fy in the spin-1 ba-
sis with Mx(x, z) = −M0x cos(k0x) sin(k0z) and My(x, z) =
−M0y sin(k0z) cos(k0x), which yield the 2D SO coupling
dxFx + dyFy in the Hamiltonian [Eq. (1)] under the tight-
binding approximation (in the x-z plane). The coupling
strength M0x(y) can be tuned through the intensity of Raman
beams and optical detunings �s and �p . In the lattice model,
the bands between | ± 1〉 and |0〉 are inverted, yielding the
term dz(I − F 2

z /2) in Eq. (1). The tensor and vector Zeeman
fields δT F 2

z /4 + δV Fz/2 can be tuned by changing the two-
photon Raman detunings δ±1 between | ± 1〉 and |0〉. The
s-wave pairing interaction can be tuned through Feshbach
resonance [5,47,48]. To observe the topological edge state, the
previous experimental scheme of quenching a shaping poten-
tial in 2D a square lattice can be similarly implemented [55].

B. Extension to a larger spin

Both the physical results and proposed experimental
scheme can be extended to even higher spin systems.
Here we simply list the results and leave the details in
Appendix E. We consider a spin-s system, where only neigh-
boring spins are coupled through Rashba- or Rashba-type SO
coupling and each coupling term may contribute a winding
number ±1. At a certain high-symmetry point in BZ, two
bands may become degenerate and a high-order band crossing
point appears with large Berry flux. Specifically, if the band
touching has an mth-order dispersion relation, it can possess
a winding number m, m − 2,..., −m + 2 and −m, depending
on the explicit form of the system Hamiltonian. Based on this
argument, there are two types of quadratic band touchings,
one with ±2 winding and the other is trivial. The low-energy
Hamiltonian for the later can be written as kyFx ± kx{Fy, Fz}.
There are totally 2s SO coupling terms, therefore the highest-
order band touching should have a winding number ±2s.
Moreover, when multiple bands become degenerate at one
single momentum, we would have a topologically nontrivial
and more complicated counterpart of the triply degenerate
point.

When the s-wave attractive pairing interaction is consid-
ered, the highest-order band crossing in the superfluid phase
has the order 4s − 1 because the order parameter does not
contribute any winding and the pairing only occurs between
different spin states. The extension to a multi-Weyl node with
a maximum 4s − 1 charge in a 3D superfluid is apparent.
All those exotic types of band touching points do not require
any specific symmetries like point group or inversion sym-
metries, but they still can be topologically nontrivial (they
do require time-reversal symmetry in certain cases like the
quadratic band touching discussed here). Therefore the large
spin systems have significant advantages over the usual spin-
1/2 electronic systems on the experimental observation of
novel higher-order band touchings because the system does
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not have to be finely tuned to preserve certain symmetry, for
example, the equal SO coupling strengths M0x and M0y for C4

symmetry.

VI. CONCLUSION

In summary, we studied the physics and experimental
realization of pseudospin-1 Fermi gases with 2D Rashba-type
SO coupling and found many exotic topological quantum
phases, such as triply degenerate points, quadratic and cubic
band touchings, triple-Weyl nodes, and so on. Our work
provides an alternative route for engineering many fascinating
topological quantum matters by utilizing large spin degrees,
instead of complex optical lattice geometry (see Appendix
F for a discussion of robustness against lattice distortions).
Our results may motivate further theoretical and experimental
investigations of interesting SO coupling effects in larger spin
systems.

ACKNOWLEDGMENTS

This work is supported by the Air Force Office of Sci-
entific Research (Grant No. FA9550-16-1-0387), the Na-
tional Science Foundation (Grants No. PHY-1505496 and No.
PHY-1806227), and the Army Research Office (Grant No.
W911NF-17-1-0128).

APPENDIX A: SPIN-1 PAULI MATRICES

The spin vectors are usually defined as the finite-
dimensional irreducible representation of SU(2) which has
a dimension 2s + 1 for spin-s systems. By convention, we
denote the spin-1/2 spin operator as S1/2 = h̄

2 σ, where σ =
(σx, σy, σz ) denotes the Pauli matrices. Similarly, for a spin-1
system we have S1 = h̄

2 F, where

Fx =
⎛⎝ 0

√
2 0√

2 0
√

2
0

√
2 0

⎞⎠, Fy =
⎛⎝ 0 −√

2i 0√
2i 0 −√

2i
0

√
2i 0

⎞⎠,

(A1)

and Fz = diag(−2, 0, 2) is diagonal.

Note that, Fz and F 2
z form the Cartan subalgebra of SU(3)

and thus, any in-plane Zeeman field can be linearly decom-
posed up to a constant.

APPENDIX B: SINGLE-PARTICLE PHASE DIAGRAM

By tuning the detunings δ±1, we can change the relative
energy between different bands. For a very large δ±1, either
the top or bottom band is pulled far away and the spin-1
model can be reduced to a spin-1/2 system, which was studied
by the authors of Ref. [51]. With such an observation we
expect to observe interesting topological phases in the spin-1
model when one of the detunings satisfies 0 < |δ±1| < 8t . In
Figs. 5(a) and 5(b), the phase diagrams of the Chern number
for two upper bands are plotted with respect to δ±1. Note that
the phase diagram for the lowest band was presented in the
main text.

Since the upper and lower bands are only coupled to
the middle band, similarly to the spin-1/2 case, they should
have C = ±1 when 0 < |δ±1| < 8t . If the Chern numbers of
those two bands have opposite sign, the middle band must
be trivial. Otherwise, the middle band has a large Chern
number C = ±2 in the opposite way, as illustrated in Fig. 5(c).
Such a combination makes the phase diagram of the middle
band much richer. If we consider only the topological phase
transition points from the spin-1/2 case, i.e., δ±1 = 0,±8t ,
the (δ+1, δ−1) plane is divided in to 16 square (rectangle)
regions with different Chern number ±2, ±1, and 0. In most
cases, the transition is characterized by the emergence of
Dirac cones at high-symmetry points in BZ. An interesting
example in which the middle band touches both the lower and
upper bands is shown in Fig. 5(d).

Each Dirac cone carries a Berry flux ±π , which changes
the Chern number by ±1. In this sense, when the Chern
number is changed by ±2 (±2 to 0 or ±1 to ∓1), a pair of
Dirac cones must appear. Note that, unlike a spin-1/2 system,
the Dirac cone here is not protected by the time-reversal
symmetry, although its low-energy Hamiltonian does exhibit
such a symmetry. For the phase transition from Chern number
±2 to ∓2, a possible mechanism is that four Dirac cones
appear with each one contributing a change of 1. However,
this is not the case here. In our model, four high-symmetry

FIG. 5. (a, b) The Chern number for upper and middle bands in the plane (δ+1, δ−1), respectively. The summation over the Chern number
of all three bands equals to 0. (c) A typical band structure when all bands are well separated and the middle band has a Chern number of 2.
The Zeeman fields are chosen as the dark cross in panel (a, b). (d) The single Dirac band touching between adjacent bands at high-symmetry
points in BZ. The parameters are labeled by the dark circle in (b). The circle locates on multiple boundaries, where the middle band crosses
with both lower and upper bands.
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points fall into two groups, which are mutually exclusive for
weak Zeeman fields. Therefore we cannot expect to have four
of the same type of band touching points between two bands,
and higher-order band touching points with quantized nonzero
(and > π ) Berry flux must appear to have a large change
(±4) of the Chern number. Such quadratic band touching and
associated band structure were studied explicitly in the main
text.

Similarly, with increasing δT , the lower band is pulled
away from the triply degenerate point and the upper two bands
are degenerate with quadratic band dispersion. However, the
band Chern number vanishes after the gapless points are open
because the upper two bands have quadratic band touchings
at all �, M, and two X points with wind number −2, −2, and
2 ∗ 2, whose summation is zero.

APPENDIX C: (TRIPLE-)WEYL POINTS AND EDGE
STATES

In Fig. 6(a), the triple-Weyl point shown in Fig. 3(b) is also
plotted in the k′

z-kx plane (the right touching point), which
shows a linear band dispersion along k′

z. The band touching
on the left is a Weyl point, indicated by the red disks in
Figs. 3(a) and 3(c). Another Weyl point at larger |kz| [the
yellow triangles in Figs. 3(a) and 3(c)] appears at the M point
kx = ky = π as shown in Fig. 6(b).

The corresponding edge states for a few 2D band structures
with fixed k′

z are shown in Figs. 6(c) to 6(e). When k′
z lies

in between two � Weyl points, there are three edge modes
Fig. 6(c), agreeing with the bulk Chern number 3 [Fig. 3(a)].
However, one of these edge modes crosses zero energy twice,
leading to four surface arcs observed in Fig. 3(c) and large
surface-state density at ky = 0. Across the � Weyl point, the

band gap at ky = 0 for the twisted edge state is opened, and the
number of edge states becomes four, agreeing with the bulk
Chern number of 4 in Fig. 3(a). When k′

z further increases and
we cross the � tripe-Weyl node, only one edge state at ky = π

is left as shown in Fig. 6(e), agreeing with the bulk Chern
number of 1.

APPENDIX D: EFFECTIVE HAMILTONIAN AND
TIGHT-BINDING MODEL

As illustrated in Fig. 4(a), two beams (red lines)
are incident from both the x and z directions and
reflected by two mirrors to form two standing waves
E1x = ẑE1xei(ϕ1x+ϕ1z+ϕL )/2 cos(k0x + α) and E1z =
x̂E1zei(ϕ1x+ϕ1z+ϕL )/2 cos(k0z + β ), where E1x(z) is the
field strength, ϕ1x(z) is the initial phase, ϕL = k0K
is the phase picked up from optical path K , and
α(β ) = (ϕ1x(z) − ϕ1z(x) − ϕL )/2. Another two beams
(blue and green lines) are incident along the z direction
to form plane-waves E2(3)z = x̂E2(3)zei(k0z+ϕ2(3) ) and
E2(3)x = ẑE2(3)xei(−k0x+ϕ2(3)+ϕL−δϕL2(3) ) with the initial phases
ϕ2(3) and relative phases δϕL2(3) = (ω1 − ω2(3))K/c.

The level diagram and optical couplings are illustrated in
Fig. 4(b). Although both transition lines D2(2S1/2 → 2P3/2)
and D1(2S1/2 → 2P1/2) contribute to the coupling, the second
is negligible due to large detuning �. As a result, we mainly
consider the contribution from D2 transitions. The optical
dipole potentials are summed over all possible transitions

Vmσ ,T (x) = |1x,mσ ,T |2
�p

, Vmσ ,T (z) = |1z,mσ ,T |2
�p

, (D1)

where mσ = +9/2,+7/2,+5/2 denotes the value of mF

for each spin component (corresponding to +1, 0, and −1,

FIG. 6. (a) Band structure in the ky = 0 plane. The triple-Weyl node locates on the right side and the dispersion is linear along the k′
z

direction. On the left-hand side, there is a Weyl point with linear dispersions along all directions. (b) Band structure in the ky = π plane with
a M Weyl point. (c–e) Edge states along ky with fixed k′

z = 0.45, kz = 0.77′, and k′
z = 1.45, respectively. The other parameters are the same as

those in Fig. 3.
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respectively) and T = σ±, π represents three different tran-
sitions. The effective Rabi frequency 1x(z),mσ ,T is defined
through

1x,mσ ,T =
√∑

F

|x,F,mσ ,T |2,

1y,mσ ,T =
√∑

F

|z,F,mσ ,T |2, F = 11

2
,

9

2
, . . . , mσ ,

(D2)

with

|x(z),F,mσ ,σ+| = |μmσ ,F,σ+||E1x(z)|,
|μmσ ,F,σ+| = 〈

9
2 , mσ |r · ε1x(z)|F, mσ + 1

〉
,

|x(z),F,mσ ,π | = |μmσ ,F,π ||E1x(z)|,
|μmσ ,F,π | = 〈

9
2 , mσ |r · ε1x(z)|F, mσ

〉
,

|x(z),F,mσ ,σ−| = |μmσ ,F,σ−||E1x(z)|,
|μmσ ,F,σ−| = 〈

9
2 , mσ |r · ε1x(z)|F, mσ − 1

〉
,

where ε1x(z) are the polarization vectors of lasers. For a π

transition, we have

V+1,π,x(z) : V0,π,x(z) : V−1,π,x(z)

=
∑

F

|μ9/2,F,π |2 :
∑

F

|μ7/2,F,π |2 :
∑

F

|μ5/2,F,π |2, (D3)

which is

V+1,π,x(z) : V0,π,x(z) : V−1,π,x(z)

= 1215 + 3240 : 2187 + 1960 + 308 : 2916 + 1000

+ 539

= 1 : 1 : 1

for the experimental data of 40K. Similarly, we can calculate
those coefficients for σ± transitions

V+1,σ±,x(z) : V0,σ±,x(z) : V−1,σ±,x(z)

= 13365 + 243 + 1440 + 2772 : 10935 + 1440 + 729

+ 2560 + 2156 : 8748 + 2560 + 77 + 1458

+ 3360 + 1617

= 1 : 1 : 1.

One can also verify that this still holds true even when we
take the D1 line into account. Therefore this lattice potential
is indeed spin-independent and can be written as

V (r) = V (x) + V (z)

= V0x cos2(k0x + α) + V0z cos2(k0z + β ). (D4)

As shown in Fig. 4(b), each plane-wave induces two
Raman couplings. The four coupling strengths are

M1x,2z =
∑

F

∗
1x,F,9/22z,F,7/2

�p
,

M1z,2x =
∑

F

∗
1z,F,9/22x,F,7/2

�p
,

M1x,3z =
∑

F

∗
1x,F,7/23z,F,5/2

�p
,

M1z,3x =
∑

F

∗
1z,F,7/23x,F,5/2

�p
,

where

ix,F,σm = 〈
9
2 , mσ |x̂ · εix|F, mσ

〉
Eix, i = 1, 2, 3;

1z,F,σm = 〈
9
2 , mσ |ẑ · ε1z|F, mσ − 1

〉
E1z,

iz,F,σm = 〈
9
2 , mσ |ẑ · εiz|F, mσ + 1

〉
Eiz, i = 2, 3.

After inserting the effective Rabi frequency, we obtain

M2(3)z,1x = M0,2(3)x

× cos(k0x + α)e−i(k0z+β )ei(ϕ2(3)−ϕ1z ),

M2(3)x,1z = M0,2(3)z

× cos(k0z + β )ei(k0x+α)ei(δϕL2(3)+ϕ2(3)−ϕ1z ).

Note that the terms proportional to cos(k0x) cos(k0z) are anti-
symmetric to each lattice site in both the x and z directions and
thus can be neglected for low-band physics [51]. The resulting
coupling strengths are

M2(3)x = −M2(3)x + M2(3)y cos δϕL2(3), (D5)

M2(3)y = M2(3)y sin δϕL2(3), (D6)

with M2(3)x=M0,2(3)x cos(k0x + α) sin(k0z + β ) and M2(3)y=
M0,2(3)y cos(k0z + β ) sin(k0x + α). In the following, we as-
sume that the strengths of the incident beams are tuned
such that M2x(y) = M3x(y) = Mx(y). Now, the total effective
Hamiltonian in two dimensions can be written as

H = p2

2m
+ V (r) + MxFx + MyFy + δT F 2

z + δV Fz. (D7)

If δϕL = nπ, n ∈ Z, the SO coupling becomes 1D. Here,
we set δϕL = π/2 and α, β = 2nπ such that the coupling
terms become

Mx(x, z) = −M0x cos(k0x) sin(k0z), (D8)

My(x, z) = −M0y cos(k0z) sin(k0x). (D9)

As we only consider the lowest s orbital φs,σ (σ = +1, 0,−1)
and nearest-neighbor hopping, the tight-binding Hamiltonian
is

HTI = −
∑

〈i, j〉,σ
t i j ĉ†i,σ ĉ j,σ

+
∑
〈i, j〉

(
t i j
so,+ĉ†i,+1ĉ j,0 + H.c. + t i j

so,−ĉ†i,0ĉ j,−1 + H.c.
)

+ δT

∑
i

(n̂i,+1 + n̂i,−1) + δV

∑
i

(n̂i,+1 − n̂i,−1),

(D10)

where hopping strengths can be expressed as overlap integrals

t i j =
∫

d2rφi
s,σ (r)

[
p2

2m
+ V (r)

]
φi

s,σ (r), (D11)
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and

t i j
so,+ =

∫
d2rφi

s,+1(r)[Mx(x, z)Fx + My(x, z)Fy]φi
s,0(r),

t i j
so,− =

∫
d2rφi

s,0(r)[Mx(x, z)Fx + My(x, z)Fy]φi
s,−1(r).

While the usual nearest-neighbor hopping is obviously the
same at different sites in all directions, the spin-flip process is
more subtle. Even though it has been generalized to the spin-1
system, the reasoning of the authors of Ref. [10] is still valid
and thus the Raman potential hopping is staggered as

t ix,ix±1
so = ±(−1)ix+iz tso, t iz,iz±1

so = ±i(−1)ix+iz tso. (D12)

Upon applying the transformations ĉi,0 → eiπ (xi+zi )ĉi,0 and
ĉi,−1 → ei2π (xi+zi )ĉi,−1 and a Fourier transformation, we ob-
tain our model Hamiltonian in momentum-space up to some
constants (where we also defined the lattice constant a = π

k0
as the unit of length). We remark that such a unitary transfor-
mation does not affect the form of interatomic interaction.

APPENDIX E: EXTENSION TO LARGER SPINS

In the last subsection in the main text, we generalize our
results on high-order band touching to a genuine large spin
system and compare them to those in electronic systems
enriched by special point-group symmetry Cn. This Appendix
provides some detailed discussions.

Considering a spin-s system, our model Eq. (1)
can be extended to H0 = −∑

k,l �= j hk,l, j ĉ
†
k,l ĉk, j where the

spin indices −s � l, j � s enumerate each spin com-
ponent. The matrix element of hk,l, j can be written
as hl,l = δl + tl [cos(kx ) + cos(ky)], hl,l+1 = tl,l+1,y sin(ky) +
itl,l+1,x sin(kx ), and hl,l+1 = h∗

l+1,l . In the following, we drop
the subscript k for convenience and assume all coupling
constants are real. The coupling terms tl,l+1,x and tl,l+1,y

are generic since we imposed no special symmetry. A band
touching point appears at the two X (� and M) points for
δl = δ j (δl + 2tl = δ j + 2t j and δl − 2tl = δ j − 2t j). In our
previous discussion, tl = t j , therefore the band touchings at
� and M always accompany each other.

We start from the case where degeneracy only happens
between two spin components l and j ( j > l). Expanding the
Hamiltonian around a band touching point at one of the four
high-symmetry points Kn, one has the following two-level
effective Hamiltonian:

H (Kn + q) = g(q)σ+ + g∗(q)σ− + δσz, (E1)

where σ± = σx ± iσy and q = |q| is assumed to be small.
Any other diagonal term is neglected and δ is introduced
for later convenience. So far we discuss δ = 0 for the
single-particle case. The coupling term would be in the form
g(q) = �l�k< j (akqeiθk − bk ) in general and the constants bk

come from expanding the trigonometric function around Kn.
Notice that this gives, up to some constants, the Cartesian
products of three real irreducible representations of point
group Cn, therefore it is not surprising to see the low-energy
Hamiltonian of the high-order band touching point in our
model shares the same form as those stabilized by Cn

rotational symmetry [32,41]. When ak �= 0 and each θk can
be well defined, this high-order band touching point has a

multiplicity m = j − l . Note that, generally, this multiplicity
is not equal to the Berry flux of such a crossing point. In fact,
the winding number of this touching point is

∑
k sign(θk ). If

sign(θk ) can be tuned (i.e., the relative sign between tk,k+1,x

and tk,k+1,y), we are able to engineer a m-order band touching
point with possible Berry flux mπ , (m − 2)π ,..., (−m + 2)π ,
−mπ . For example, for the coupling kxFy + kyFx and in
the region sign(δ+1)sign(δ−1) > 0 and −8 < δ±1 < 8,
we have a large Chern number phase with the phase
transition characterized by quadratic band touching carrying
a −2π Berry flux. However, if the model is modified to
kyFx ± kx{Fy, Fz} (time-reversal symmetry has been broken),
the band touching point still shows a quadratic dispersion, but
becomes topologically trivial.

Now, assume we have multiple degeneracy among
spin components −s � s1 < s2 < · · · < sn � s when δsk =
δc,sk , sk ∈ S = {s1, s2, . . . , sn} at a certain Kn in BZ. The
whole phase diagram for a given band would have dimension
2s. We first consider one ordered pair si and s j with s j >

si, si, s j ∈ S. Following what we discussed above, this defines
a gapless (2s − 1-dimensional) subspace Rsi,s j with a s j − si

order band touching point carrying some winding number
wsi,s j if δsk is slightly deviated from δc,sk for any sk ∈ S
and sk �= si, s j . The multiply degenerate point exists in the
subspace expressed as ∪(si,s j )R(si,s j ) when δsk approaches δc,sk

from all allowed directions and has a winding number ws0,sn ,
which is equal to

∑
1�i<n wsi,s(i+1) . Thus, one would obtain a

topologically nontrivial multiply degenerate point as a gener-
alization of triply degenerate point in a lager spin system.

So far we have seen that the high-order band touching
point conceived in our system can be ascribed to degeneracy
and indirect coupling between degenerate spin components.
Thus, it would be natural to have even higher-order band
crossing when pairing is introduced. The pairing order pa-
rameter �i, j between spin component i and j enters the BdG
Hamiltonian as complex numbers and opens superconducting
gaps. We would consequently see many gapped topological
superfluids with large Chern numbers and high-order band
touching points that serve as topological phase transition
points. However, �i, j is a constant and contributes neither
multiplicity nor winding to a band touching point. In previous
discussions, we only consider pairing between |0〉 and |1〉 to
have a cubic band touching.

When the third spatial dimension is included, it appears in
the diagonal terms as free single-particle kinetic energy. After
expanding the system Hamiltonian around a band touching at
Kn and some k′

z0 we have δ = k′
z in Eq. (E1). Now, Eq. (E1)

is a direct generalization of chiral Weyl fermions in free
space. Such a multi-Weyl node may carry a large charge
and is spatially anisotropic, i.e., it is linear along kz but
shows high-order dispersion along kx and ky. We expect exotic
chiral magnetic effects due to the nonlinear band structure of
multi-Weyl nodes, as compared to traditionally defined Weyl
fermions [44].

APPENDIX F: ROBUSTNESS OF BAND TOUCHING
AGAINST DISTORTED LATTICE

In the main text, we consider the SO-coupled Fermi gases
on a regular square lattice with C4 symmetry. While we
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FIG. 7. (a) Similar to Fig. 1(a) but plotted with symmetry break-
ing terms such that tx = 1, ty = 0.5, tSO,x = 1, and tSO,y = 0.5.
(b) With such an anisotropy, the 2D triply degenerate point now
occurs at δT = 6.

provided physical insights into the symmetry protection using
the coupling scheme depicted in Fig. 1(c), we offer a numeri-
cal verification in this Appendix.

To show that the rotational symmetry does not affect the
band touchings studied in Sec. II, here we distort lattice po-
tential to be anisotropic. Consequently, both the bare hopping
and SO coupling along x and y are no longer the same.
We compare in Figs. 1(a) and 7(a) how such an anisotropy
affects the single-particle band structures. The quadratic band
touchings at the corners and the sides of the Brillouin zone
survive while it seems apparently that the 2D triply degenerate
point vanishes. In fact, the triply degenerate point is merely
shifted along the time-reversal symmetry line in parameter
space and is now located at δT = 6.
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