
PHYSICAL REVIEW A 102, 033339 (2020)

Robust Weyl points in a one-dimensional superlattice with transverse spin-orbit coupling
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Weyl points, synthetic magnetic monopoles in the three-dimensional momentum space, are the key features
of topological Weyl semimetals. The observation of Weyl points in ultracold atomic gases usually relies on
the realization of high-dimensional spin-orbit coupling (SOC) for two pseudospin states (i.e., spin 1/2), which
requires complex laser configurations and precise control of laser parameters, thus, has not been realized
in experiment. Here, we propose that robust Weyl points can be realized using one-dimensional triple-well
superlattices (spin-1/three-band systems) with two-dimensional transverse SOC achieved by Raman-assisted
tunnelings. The presence of the third band is responsible to the robustness of the Weyl points against system
parameters (e.g., Raman laser polarization, phase, incident angle, etc.). Different from a spin-1/2 system, the
nontrivial topology of Weyl points in such spin-1 system is characterized by both spin vector and tensor textures,
which can be probed using momentum-resolved Rabi spectroscopy. Our proposal provides a simple yet powerful
platform for exploring Weyl physics and related high-dimensional topological phenomena using high pseudospin
ultracold atoms.

DOI: 10.1103/PhysRevA.102.033339

I. INTRODUCTION

A Weyl semimetal, an exotic topological phase of matter,
possesses quasiparticle excitations behaving as Weyl fermions
in the bulk and intriguing Fermi arcs on the surface [1–5].
The key feature of a Weyl semimetal is the appearance of
Weyl points [gapless points in the band structure with lin-
ear dispersion in three-dimensional (3D) momentum space]
characterized by nontrivial topological invariants [3,4]. Weyl
point does not depend on symmetry except the translational
symmetry of the crystal lattice and is the most robust degen-
eracy which can only be gapped out when annihilates with
another Weyl point with opposite topological charge. Weyl
fermions may exhibit nontrivial electromagnetic responses to
the external gauge field [6–8]. Due to the fundamental im-
portance of Weyl fermions and the potential application of
surface states, significant theoretical and experimental pro-
gresses have been made for exploring Weyl physics in both
solid-state materials [9–18] and synthetic systems, such as ul-
tracold atomic gases [19–26], photonic [27–32], and acoustic
crystals [33]. In contrast to solid-state materials whose com-
plicated band structures make the probing of Weyl-fermion
topology elusive, synthetic systems are simple, clean, and
highly controllable. In particular, recent experimental real-
ization of one-dimensional (1D) and two-dimensional (2D)
spin-orbit coupling and synthetic gauge field in ultracold
atoms makes the atomic system one of the most promising
platforms for studying topological effects and the novel state
of matter [34–47].

So far, most ultracold atom-based schemes [19–26] for
realizing Weyl physics rely on the generation of 3D spin-

*Corresponding author: chuanwei.zhang@utdallas.edu

orbit coupling for two pseudospin states (i.e., spin 1/2) in
either optical lattices or free space, which require complex
laser setups. Furthermore, such Weyl points are usually very
sensitive to laser parameters (e.g., phases, polarizations, and
incident angles), making the experimental realization very
challenging with current technique. Weyl points were also
proposed in quasiparticle spectra of BCS superfluids with
spin-orbit coupling [48–50], but the experimental realization
of such a superfluid is difficult due to heating. Finally, probing
nontrivial topology of Weyl points for spin-1/2 systems is
another challenging task, which requires measurements in var-
ious spin bases [51] where many precisely controlled pulses
are needed.

In this paper, we propose a much simpler scheme to realize
robust Weyl points and probe their nontrivial topology using
a 1D superlattice. Instead of a spin-1/2 system, we consider
a three-band (i.e., spin-1) model using a triple-well superlat-
tice with neighbor site tunnelings assisted by three Raman
lasers. The Raman-assisted tunnelings also induce momentum
transfer on the transverse plane, leading to 2D SOC in the
transverse free space. Our main results are as follows:

(i) The three-band system supports two Weyl points, corre-
sponding to the degeneracy between two-lower and two-upper
bands, respectively. Therefore, they cannot annihilate with
each other and any change in system parameters only shifts
their positions, leading to the robustness against variations of
laser parameters (e.g., incident angle, intensity, phase, detun-
ing, and polarization). Such robustness originates from the
higher-dimensional Hilbert space enabled by the spin-1 sys-
tem, which reduces the requirement for precisely controlled
SOC for spin-1/2 systems.

(ii) For any two neighbor bands, the corresponding surface
states would connect the Weyl point to infinite momentum,
indicating that there is a virtual Weyl point (with opposite
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charge) at infinity. This can also be seen by the trajectory of
the Weyl point, which may annihilate with its virtual partner
only when it is shifted to infinity for certain critical system
parameters. Away from these critical values, the Weyl points
persist.

(iii) Although the Berry flux around the Weyl point pos-
sesses monopole behavior, the spin textures for such a spin-1
system is very different from the spin-1/2 system [23–26].
Since the spin-1 vector may go into the Bloch sphere repre-
senting the phase space and even vanish by crossing the center,
the nontrivial topology of the Weyl point is characterized not
only by the spin vectors, but also by the spin tensors. We also
find that there is a one-to-one correspondence between the
nontrivial Chern number and the number of vanishing points
in the spin vector textures around the Weyl point.

(iv) We propose a simple scheme to detect the nontriv-
ial topology of Weyl points based on momentum-resolved
Rabi spectroscopy and time-of-flight imaging. Surprisingly,
the additional trivial band near the Weyl points can serve
as a reference which greatly simplifies the detection pulse
sequence.

II. THE MODEL

We consider a simple experimental setup shown in
Fig. 1(a), which contains a 1D superlattice along the z direc-
tion with three sites in each unit cell and is free on the 2D
xy plane (i.e., no transverse lattices). The detunings between
different sites in the unit cell are large, and the bare tunnelings
are suppressed significantly. We introduce the Raman-assisted
tunnelings using three Raman lasers [46,47] with each site
in the unit cell addressed by one and only one Raman laser
whose frequency difference is chosen to match the lattice
site detuning [see Fig. 1(b)]. The wave vectors should have
nonzero components along z to induce momentum kicks
which is needed to generate the tunneling between neigh-
bor sites. The Raman-assisted transitions acquire transverse
momentum kicks that are determined by the transverse com-
ponents of the wave vectors.

We adopt the tight-binding approach and expand the wave
function as |�(r)〉 = ∑

j a j (x, y)|Wj (z)〉 with |Wj (z)〉 as the
Wannier function for site j in the z direction. The pseudospin
operators in each unit cell are denoted as bl,↓(x, y) =
a3l (x, y), bl,0(x, y) = a3l−1(x, y), bl,↑(x, y) = a3l−2(x, y)
with l as the unit-cell index. The detunings among them

FIG. 1. (a) Experimental scheme for generating robust Weyl
points using a triple-well superlattice. Three Raman lasers are used to
induce the neighbor site tunnelings. (b) Corresponding level structure
and two-photon Raman transitions in the superlattice.

are �↑, �↓, and �↑ ± �↓ (see Fig. 1), which are much
larger than the bare nearest-neighbor tunneling. Resonance
tunnelings between neighbor lattice sites are induced by three
Raman lasers with frequencies ω↑, ω0, and ω↓, satisfying
ω↑ − ω0 � �↑ and ω↓ − ω0 � �↓. The pseudospin state |s〉
is addressed by the laser with frequency ωs (s =↑, 0,↓ 0,
which induces both intra- and inter-unit-cell tunnelings.
The Raman-laser wave-vectors Ks = Kz,s + K⊥,s (with
Kz,s �= Kz,s′ for s �= s′) have nonzero components along
both longitudinal and transverse directions, and the latter
induces transverse spin-orbit couplings. The single-particle
Hamiltonian in the rotating frame is

H =
∑
l,s

(
k2

⊥
2m

+ δs

)
|l, s〉〈l, s| +

∑
l,s;l ′,s′

Jl,s;l ′,s′ |l, s〉〈l ′, s′|,

(1)

where |l, s〉 is the single-particle state at unit-cell l with
spin s, the nonzero Raman-assisted tunnelings are Jl,0;l,↑ =
J1ei(K↑·rl↑−K0·rl0 ), Jl,↓;l,0 = J2ei(K0·rl0−K↓·rl↓ ), and Jl+1,↑;l,↓ =
J3ei(K↓·rl↓−K↑·rl↑ ) with rls = (x, y, zls) as the coordinates of
atoms at site (l, s). δs is the corresponding detunings and
k⊥ = (kx, ky) is the transverse momentum.

In the quasimomentum frame after the transformation
|l, s〉 → eiKs·rls |l, s〉, we obtain the Hamiltonian,

H =
∑
l,s

[
(k⊥ − K⊥,s)2

2m
+ δs

]
|l, s〉〈l, s|

+
∑

l

(J1|l, 0〉〈l,↑ | + J2|l,↓〉〈l, 0|

+ J3|l + 1,↑〉〈l,↓ | + H.c.), (2)

where K⊥,s corresponds to the transverse momentum kick by
the sth Raman laser, which gives the 2D spin-orbit coupling
strengths in the transverse direction. The Hamiltonian in the
Bloch momentum space is

Hk =
∑

s

[
(k⊥ − K⊥,s)2

2m
+ δs

]
|s〉〈s| +

∑
s �=s′

Js,s′ (k)|s〉〈s′|.

(3)

The intra-unit-cell couplings are J↑,0(k) ≡ J∗
0,↑(k) = J1

and J0,↓(k) ≡ J∗
↓,0(k) = J2, the inter-unit-cell coupling is

J↓,↑(k) = J∗
↑,↓(k) = J3eikz . In general, the tunneling coeffi-

cients J1–3 are complex whose phases are determined by the
global phases of the Raman lasers. However, we note that
these phases are unimportant and can be gauged out by ab-
sorbing them in to the definition of the pseudospin state on
each site, and there is no need for fine-tuning of the Raman-
laser phases. We can simply set J1–3 to be real (we will assume
all J1–3 positive unless otherwise stated).

The Hamiltonian in Eq. (3) supports two robust Weyl
points when all three couplings J1–3 are nonzero and the three
points K⊥,s = (Kx,s, Ky,s) are noncollinear (see Appendix A).
In this paper, we are interested in the Weyl physics where the
three points K⊥,s = (Kx,s, Ky,s) form a triangle (i.e., they are
noncollinear). So, we can denote Q as the triangle’s circum-
center and set Q as the origin of quasimomentum frame by a
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FIG. 2. (a) Band structure at kz = 0 with Weyl point W1 be-
tween two lower bands. (b) Band structure at kz = π with Weyl
point W2 between two upper bands. The midgap band shows the
surface state dispersion on z = 0 when open boundary conditions
are considered. (c) Surface spectrum densities Im γ

π

1
ω−H−iγ at differ-

ent frequencies and momenta with γ = 0.02 and ky = 0. The two
surface arcs on the two surfaces coincide. (d) Typical distributions
(Pj) of the two surface states with j as the site index along the open

direction z.
k2

⊥
2m is dropped when plotting the band structures. Other

parameters are J1 = J2 = J3 = 1, K⊥,↑ = (−1/2,
√

3/2), K⊥,0 =
(1, 0), K⊥,↓ = (−1/2, −√

3/2), and δ↑ = δ0 = δ↓ = 0.

transformation |l, s〉 → e−iQ·rls |l, s〉, the Hamiltonian reads

Hk =
∑

s

[
(k⊥ − K′

⊥,s)2

2m
+ δs

]
|s〉〈s| +

∑
s �=s′

Js,s′ (k)|s〉〈s′|,

(4)

with K′⊥,s = K⊥,s − Q. Therefore, we have |K′⊥,s| ≡ kR,⊥
for the three-spin states s. We will set the momentum and

energy unit as kR,⊥ and
k2

R,⊥
2m = 1 and consider that the three

points K′⊥,s = (K ′
x,s, K ′

y,s) change on a unit circle [i.e., the
three points K⊥,s = (Kx,s, Ky,s) change on a unit circle cen-
tered at Q]. In the following, we will focus on the Hamiltonian
Eq. (4) and drop the prime symbol in K′⊥,s for simplicity.

We denote the two robust Weyl points as W1 and W2

at [kW1
x , kW1

y , 0] and [kW2
x , kW2

y , π ]. The Weyl point W1 corre-
sponds to the degeneracy between two lower bands whereas
W2 for two upper bands. W1 and W2 are related to differ-
ent bands, therefore, they cannot annihilate with each other.
Any change in system parameters only shifts the positions
of the Weyl points. The typical band structures are shown
in Figs. 2(a) and 2(b) where two Weyl points are clearly

shown. k2
⊥

2m is dropped when plotting the band structures in
Fig. 2, our system is not a semimetal, and the dispersion
relation at higher values of k⊥ goes up in energy.

III. SURFACE ARCS AND WEYL POINT TRAJECTORIES

In general, Weyl points between any two bands should
appear in pairs for a 3D lattice system because the Brillouin
zone is a closed manifold without boundary [23–26]. Our

FIG. 3. (a) The trajectory of Weyl points W1 (blue solid lines)
and W2 (red dashed-dotted lines) as the inter-unit-cell tunnel-
ing varies across zero. J1 = J2 = 1, K⊥,↑ = (−1/2,

√
3/2), K⊥,0 =

(1, 0), and K⊥,↓ = (−1/2, −√
3/2). Two Weyl points shift

to infinite momenta at J3 = 0. (b) The trajectories of Weyl
points W1 (blue solid lines) and W2 (red dashed-dotted lines)
when K⊥,0 = (cos θ, sin θ ) rotates on the kx-ky plane, K⊥,↑ =
(−1/2,

√
3/2), K⊥,↓ = (−1/2, −√

3/2), and J1 = J2 = 2J3 = 1.
The two Weyl points shift to infinite momenta at θ = 2π/3 and 4π/3
where K⊥,0 coincides with K⊥,↑ and K⊥,↓, respectively.

system is free on the xy plane, therefore, we could have only
one Weyl point between two bands since the momentum space
is an open manifold that may have nonvanishing flux on the
boundary (at infinite kx and ky). This can be seen by looking at
the surface arcs which can only start (end) at the Weyl points.
In Figs. 2(b) and 2(c), we plot the surface arcs with an open
boundary condition along the z direction. Each boundary (left
and right) gives a surface arc which connects the Weyl point
to infinite momenta. Shown in Fig. 2(d) are the distributions
of the surface states that are well localized at the boundary.

There is only one Weyl point between two neighbor bands,
which can annihilate with its virtual partner only when it is
shifted to infinity at certain critical system parameters. The
only symmetry required, here, is the lattice symmetry along
the z direction, thus, the Weyl points are very robust against
system disorders. Shown in Fig. 3 are the trajectories of two
Weyl points W1 and W2 as functions of J1–3 and K⊥,s. As
one of the couplings J1–3 changes across the critical value 0
(from positive to negative), two Weyl points first disappear
then reappear at infinity (k⊥ → ∞ ) with kz changing from
0 (π ) to π (0) for the Weyl point W1 (W2). The two Weyl
points move similarly as K⊥,s − K⊥,s′ changes across the
critical value 0, except that kz is fixed for both of them. The
Raman-laser phases are irrelevant since the phases of J1–3 do
not affect the band structure (e.g., the phase of J3 only induces
a global shift of all bands along kz). Finally, the pseudospin is
represented by different superlattice sites on the same atomic
hyperfine state, making the tunnelings J1–3 insensitive to laser
polarizations.

IV. BERRY FLUX AND SPIN TEXTURES

The topological properties of the Weyl point can be char-
acterized by the first Chern number [3,4],

Cn = 1

2π

∮
S
∇k × An(k) · dS, (5)

where S is a momentum-space surface enclosing the Weyl
point and An(k) = i〈un(k)|∇k|un(k)〉 is the Berry connection
with |un(k)〉 as the eigenvector (Bloch wave function) of the
nth band. Cn = ±1 indicates that the Berry curvature (flux)
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FIG. 4. (a) and (b) Berry flux and spin vector distributions on
the sphere S enclosing Weyl point W1. (c) Spin tensor distribution
as k varies on the loop L. The red lines show the direction of the
ellipsoid’s one axis, which is rotated by π along the loop. (d) The
spin vector trajectories for the loop L for all three bands. 〈F〉 would
cross the center of the Bloch sphere only for the two lower nontrivial
bands (blue solid and red dashed-dotted lines). The green dotted line
corresponds to the third trivial band. (e) The trajectories of the two
Majorana stars (blue solid and red dashed-dotted lines) on the Bloch
sphere for the loop L (the blue dot and red circle show their initial
positions, respectively). They exchange their positions and together
give rise to a π Berry phase. The radius of sphere S is rS = 1 and
other parameters are the same as in Fig. 2.

�n(k) = ∇k × An(k) on the closed surface S is quantized,
revealing the synthetic magnetic monopole behavior. The dis-
tribution of Berry curvatures around W1 is shown in Fig. 4(a)
(Berry curvatures for different bands and different surface S
can be found in Appendix B), yielding C ≡ [C1, C2, C3] =
[−1, 1, 0] for the Weyl point W1, and C = [0, 1,−1] for W2.
When both W1 and W2 are enclosed by S, we have C =
[−1, 2,−1]. Note that the Chern numbers remain unchanged
even when the radius of S approaches infinity, which explains
why the surface arcs are connected to infinity momenta, indi-
cating that there is another pair of Weyl points with opposite
charges.

For a spin-1/2 system, the quantum state is uniquely rep-
resented by a point on the Bloch sphere whose coordinates
are given by the expectation value of spin vector 〈F〉. As
momentum k runs over a surface enclosing a Weyl point in
such spin-1/2 system, 〈F〉 also covers the Bloch sphere once,
and the Berry flux is given by the solid angle on the Bloch
sphere. Spin-1 (and higher) quantum states are quite different:
First, its quantum state is not uniquely represented by the spin
vector 〈F〉; and second, 〈F〉 is not confined to the surface of the

Bloch sphere and could be anywhere on or inside the Bloch
sphere. For high spins (�1), the spin moments contain both
spin vectors and spin tensors. The spin-1 quantum state can be
uniquely represented by the combination of the spin vector 〈F〉
and a rank-2 spin tensor T with elements Ti j = 〈FiFj+Fj Fi

2 〉 −
〈Fi〉〈Fj〉, which is geometrically characterized by an ellipsoid.
The ellipsoid is fully determined by its three axes, whose
lengths and directions are given by the eigenvectors and the
square root of the eigenvalues of T , respectively [52–54].
The topology of the Weyl point in our spin-1 system should
be characterized by the geometries of both the spin vector and
the tensor textures, which are fundamentally different from
spin-1/2 systems.

An arbitrary spin-1 quantum state |�〉 can be characterized
by four parameters F, φF , θF , φT , where F = |〈F〉| is the spin-
vector length φF , θF determine the direction of the spin vector
and φT gives the relative rotation of the spin-tensor-ellipsoid
with respect to the spin vector [52–54]. This is because, for a
given 〈F〉 (i.e., F, φF , θF ), the size of the spin-tensor-ellipsoid

is also fixed with three axis lengths
√

1 − F 2,

√
1±√

1−F 2

2 .

Moreover, the axis with length
√

1 − F 2 has the same di-
rection with 〈F〉, and φT gives the direction of the other two

axes with length
√

1±√
1−F 2

2 , which fixes the orientation of the
ellipsoid [52–54]. In particular, we have

|�(F, φF , θF , φT )〉 = D(φF , θF , φT )

⎡
⎢⎢⎣

√
1+F

2

0√
1−F

2

⎤
⎥⎥⎦, (6)

with D(φF , θF , φT ) = e−iFzφF e−iFyθF e−iFzφT . Let us consider
an infinitesimal sphere S enclosing the Weyl point, the
state of the third far gapped band remains unchanged on
the whole sphere since the sphere is infinitesimal. We can
denote the third-band state at the Weyl point as |u0

3〉 =
|�(F, φF , θF , φT )〉. We first consider F �= 0, there exits one
and only one state |u0

2〉 = |�(F, φF , θF + π, φT + π )〉 satis-
fying 〈u0

3|u0
2〉 = 0 and 〈u0

2|F|u0
2〉 = −〈u0

2|F|u0
2〉. Note that F

is traceless tr(F) = 0, therefore, there exist one and only one
state satisfying 〈u0

3|u0
1〉 = 0 and 〈u0

1|F|u0
1〉 = 0. Naturally, we

also have 〈u0
2|u0

1〉 = 0. The Weyl point is characterized by an
effective spin-1/2 system spanned by states |u0

1〉 and |u0
2〉. As

the momentum changes over sphere S, the eigenstate of the
two Weyl bands changes on the Bloch sphere spanned by |u0

1〉
and |u0

2〉. The Chern number counts the times the eigenstate
covers the Bloch sphere. |u0

1〉 is the only state on the Bloch
sphere that gives vanishing 〈F〉, therefore, the Chern number
is odd (even) if and only if there are odd (even) numbers
vanishing points of the spin vector. For the special case with
F = 0, it can be shown that 〈F〉 can vanish on a loop (a great
circle coinciding with the prime meridian) instead of a point
on the Bloch sphere, and, thus, the Chern number is odd (even)
if and only if there are odd (even) numbers of vanishing loops
of the spin vector. The spin vectors form a vortex (change
their sign) around the vanishing point (across the vanishing
loop). Therefore, the spin-vector vanishing points and loops
are topological structures that can only change abruptly (e.g.,
at a gap closing), and they will remain unchanged under
smooth deformations (e.g., enlarging sphere S).
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In Fig. 4(b), we show the spin-vector distribution 〈F〉
(calculated for the lowest band) around W1 (spin textures
for different bands and different surfaces S can be found in
Appendix B). We see that the spin vector may vanish at one
certain point (blue dot), around which spin vortex emerges.
Although the Chern number of the Weyl point can be obtained
by the number of spin vortices, the Berry phase along a loop
(i.e., Berry flux on a surface enclosed by the loop) in the
momentum space (or other parameter space) is given by the
generalized solid angles involving contributions from both
spin vectors and tensors on or inside the Bloch sphere (see
Appendix C).

To illustrate how the spin tensor is distributed around W1,
we consider a loop on S and study how the ellipsoid rotates
along it. Figure 4(c) shows the spin tensor (with the view
direction along the y axis) for the first band along the loop
L: kx = rS cos θ, ky = rS sin θ, kz = 0 with rS as the radius
and θ varies from 0 to 2π (i.e., the equator of S). As θ

increases from 0 to 2π , the ellipsoid is reduced to a 2D
disk at θ = π where the spin vector crosses the center of the
Bloch sphere as shown in Fig. 4(d) (〈F〉 vanishes and changes
the sign). Along the loop L, the spin vector is confined
on the Fx-Fz plane, which gives rise to zero solid angle. Beside
the size oscillation, the orientation of the spin tensor ellipsoid
rotates around the y axis by π , which corresponds to a π Berry
phase along L due to the fact that the Weyl point reduces to a
Dirac point on the kz = 0 plane. Along the loop L, one of the
ellipsoid’s axes is fixed along the y direction, and its length
is around 0.85 which changes slightly with θ . Similar spin
tensor rotation can be obtained for the second band. However,
the spin vector crosses the center of the Bloch sphere three
times on the loop L, leading to three spin-vector vortices on
S.

The nontrivial topology of the Weyl points can also be cap-
tured by the trajectories of two Majorana stars (an unordered
pair of points on the Bloch sphere) [55]. The Berry flux is
given by the correlated solid angle of the two Majorana stars
(see Appendix D). For the loop L considered in Fig. 4(c), we
find that the Majorana stars are confined on the y = 0 plane
on the Bloch sphere. As θ increases, similar to the spin-tensor
ellipsoid, the Majorana stars also rotate with respect to the
y axis. Instead of going back to their original positions after
one circle, two Majorana stars exchange as shown in Fig. 4(e),
leading to a solid angle π .

V. IMPLEMENTATION AND DETECTION

Our scheme does not rely on the atomic hyperfine level
structure and is applicable to both alkaline atoms (e.g., lithium
and potassium) and alkaline-earth(-like) atoms (e.g., stron-
tium and ytterbium) [56–59]. The triple-well superlattice
could be realized by a superposition of two lattice potentials
with one of them having a tripled period,

V (z) = V1 cos2(kLz) + V2 cos2(kLz/3 + φL ). (7)

Using optical frequency tripling [60,61], such two lattice
potentials can be obtained with tunable relative phase φL,
similar as the double-well superlattice based on the optical
frequency doubling in recent experiments [62–65]. Alterna-
tively, it can also be realized using lasers with the same

wavelength, whereas the long-period lattice is formed by two
beams intersecting with an angle θ = 2 arcsin 1

3 . By choosing
proper lattice strengths V1, V2, and the relative phase φL, the
detunings between different sites in a unit cell are tuned to
be much larger than the bare nearest-neighbor tunneling. The
tunnelings can be restored using resonant Raman couplings
as demonstrated by recent experiments in the study of gauge
field and supersolidity.

The linear dispersion of the Weyl point can be detected
using momentum-resolved radio-frequency (rf) spectroscopy
[66], which has been widely used to study low-energy
excitation spectrum and quasiparticles in superfluids and su-
perconductors. Based on energy and momentum conservation,
the Weyl point dispersion can be extracted from the time-of-
flight absorption image after the rf pulse. In general, direct
measurement of nontrivial Berry curvatures and spin tex-
tures of Weyl points is very challenging, and simple schemes
for probing Weyl-point topology are still elusive. Here, we
propose that the detection can be realized by the momentum-
resolved Rabi spectroscopy [67] with simple pulse sequences.
Surprisingly, the simplification comes from the presence of
the third band near the Weyl point for our spin-1 system.
First, the system is initialized into the pseudospin state |s〉,
then the Raman lasers are turned on. By simply measuring
the evolution of atom population on state |s′〉 at each k, the
Bloch wave function (and thereby the Berry curvatures and
spin textures) near the Weyl points can be extracted. There
is no need to measure the population on different bases as
required for spin-1/2 systems. This is because, beside two
nontrivial bands, there is a far-detuned trivial band near the
Weyl point, which can serve as a reference band, allowing
us to determine both amplitudes and phases of the Bloch
functions for two nontrivial bands. In realistic experiments,
the population of each spin state |s〉 at each k can be measured
using a pseudospin Stern-Gerlach effect followed by the time-
of-flight imaging [64,65] .

It has been demonstrated that, for a spin-1/2 system, the
Bloch wave function, which directly determines the Berry
curvatures and spin textures, can be extracted from the
momentum-resolved Rabi spectroscopy realized by the proper
choice of laser pulse sequences [51]. Surprisingly, for our
spin-1 system, the presence of a third band would greatly
simplify the pulse sequence. The Bloch wave function of the
nth band with energy En(k) is

|un(k)〉 =
∑

s

Un,s(k)|k, s〉, (8)

with Un,s(k) as the element of the unitary matrix U . Consider
an initial state |�(0)〉 = |k, s〉, the Hamiltonian would induce
a Rabi oscillation and give a final state at time τ ,

|�(τ )〉 =
∑

n

e−iEn (k)τU ∗
n,s(k)|un(k)〉. (9)

In the following, we prove that the Bloch wave function
can be obtained by simply measuring the final state in the
spin basis {|k, s〉} with s =↑, 0,↓. Thanks to the presence
of the third band, the detecting scheme is simpler comparing
with the spin-1/2 system (where measurements in various
bases and, thus, additional precisely controlled pulses are
required) [51].
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The population on state |k, s′〉 of the final state is

Ps,s′ (k, τ ) =
∣∣∣∣∣
∑

n

e−iEn (k)τU ∗
n,s(k)Un,s′ (k)

∣∣∣∣∣
2

. (10)

We define the averaged population P̄s,s′ as

P̄s,s′ = Ps,s′ + Ps′,s

2
. (11)

Use the Fourier analysis in the time-domain P̄s,s′ (k, ω) =∫
dτ P̄s,s′ (k, τ ) cos(ωτ ), we obtain

P̄s,s′ (k, ω) =
∑
n<n′

[|U ∗
n,sUn,s′U ∗

n′,s′Un′,s| cos(φn;s,s′ + φn′;s′,s)

× δ(En′ − En − ω)], (12)

where relative phase φn;s,s′ = φn;s′ − φn;s with φn;s =
arg[Un,s]. For s′ = s, we can easily obtain the amplitude of
the matrix elements |Un,s| based on P̄s,s′ (k, ω) and the unitary
property of matrix U . Extracting the phase information is,
however, a little bit tricky. For Weyl points in a spin-1/2
system, it is impossible to determine the phase φn;s,s′ from
P̄s,s′ (k, ω) since both φn;s,s′ and φn′;s′,s change rapidly near
the Weyl point and one can only obtain their summation
φn;s,s′ + φn′;s′,s (not to mention that this summation usually
vanishes). However, for a spin-1 system, the third band can
serve as a reference which allows the determination of the
phases for the other two bands.

To show how our detecting scheme works, we focus our
discussion on Weyl point W1 in the following. In the vicinity
of Weyl point W1, the Bloch wave functions possess nontrivial
topology due to the degeneracy for two lower bands but are
trivial and almost unchanged for the highest band. Near the
frequency ω = E3 − En, we have

P̄s,s′ ∝ |U ∗
n,sUn,s′U ∗

3,s′U3,s| cos(φn;s,s′ − φ3;s,s′ ), (13)

where φ3;s,s′ is a constant near the Weyl point and can be set to
zero by absorbing it to the definition of |k, s〉. Therefore, we
obtain the relative phase φn;s,s′ (with n = 1, 2) for the two non-
trivial bands through measuring P̄s,s′ . In fact, even the phase
φ3;s,s′ is not a constant, the topologies of the Bloch functions
are not affected by absorbing φ3;s,s′ into the definition of |k, s〉,
as long as φ3;s,s′ is a nonsingular and smooth function near the
Weyl point W1. |Un,s| and φn;s,s′ can be uniquely determined in
a way such that the Bloch wave function is smooth.

The measured relative phase, which is used to extract the
Bloch wave function, is φM

n;s,s′ = φn;s,s′ − φ3;s,s′ . As a result,
the measured Bloch wave-function |uM

n (k)〉 and the true Bloch
wave-function |un(k)〉 are related by a unitary transformation
|uM

n (k)〉 = e−i�̂|un(k)〉 with �̂ = diag{φ3;↑, φ3;0, φ3;↓}. The
measured Chern number using |uM

n (k)〉 is

CM
n = 1

2π

∮
S
[�n + ∇k × 〈un(k)|χ̂ |un(k)〉] · dS, (14)

with χ̂ = ∇k�̂. In the very vicinity of the Weyl point W1, �̂

is a constant diagonal matrix, and the second term in the
square brackets of the above equation vanishes. Therefore, the
measured Berry curvature and Chern number are the same as
their true values. Far away from the Weyl point, �̂ becomes
k dependent, and the measured Berry curvature may have

FIG. 5. (a) and (b) The real and imaginary parts of U1,s on loop
L: kx = cos θ, ky = sin, θ, kz = 0 around W1 with blue solid, red
dashed-dotted, and green dotted lines corresponding to the spin states
s = ↑, s = 0, and s = ↓, respectively. (c) and (d) The amplitude and
phase of U1,s on loop L′: kz = cos θ ′, kx = sin θ ′, (ky = 0 with blue
solid and red dashed-dotted lines corresponding to the spin states
s = ↑ and s = 0, respectively. The amplitude for s = ↓ is the same
as that for s = ↑, and the phase is measured with respect to spin state
s = ↓. In (d), thin and thick lines correspond to the measured and
true values, respectively. Other parameters are the same as in Fig. 4.

small derivations from the true value, however, the measured
Chern number is unaffected as long as e−i�̂ is nonsingular and
smooth, which holds for our case when S only encloses one
Weyl point W1.

In Fig. 5, we show numerical results for the phases ex-
tracted from P̄s,s′ and their true values obtained directly from
the Hamiltonian on the two loops L and L′. For the loop L,
we always have φn;s,s′ = 0, π , so the Bloch wave function
can be extracted solely from |Un,s|, whereas the phase can be
determined simply by the continuous properties. For the loop
L′ with a large radius rS = 1, we see small derivations of the
measured relative phases from their true values.

In realistic experiments, the initialization is realized by first
tuning the lattice potential such that the s sites have the lowest
energy in each unit cell, loading atoms to the pseudospin
state |s〉 and, then, adiabatically tuning the potential to the
desired superlattices. Next, we can turn on the Raman lasers
and let the system evolve with an interval τ . The population
of the final state on s′ sites at each k [i.e., Ps,s′ (k, τ )] can be
measured using a pseudospin Stern-Gerlach effect followed
by the time-of-flight imaging [64,65].

VI. CONCLUSION

To summarize, we propose a simple scheme to realize
robust Weyl points and probe their topology, using a 1D triple-
well superlattice with transverse 2D SOC generated by three
Raman lasers. The robustness against system parameters, such
as laser intensities, phases, polarizations, and incident angles
makes our scheme very flexible, and any fine-tuning or phase-
locking techniques are not required. Moreover, we find that
the spin-1 Weyl point shows very interesting and topolog-
ically nontrivial spin (vector and tensor) textures that have
fundamental differences from spin-1/2 systems. Thanks to
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the three-band structure, these nontrivial topologies can be
detected using very simple pulse sequences. A straightforward
generalization of our scheme is to consider higher-order de-
generacies (e.g., three- or fourfold) [68–71] using even higher
spins, which may be realized by using a superlattice with more
sites in each unit cell or by including atomic hyperfine states.
Our scheme provides a simple yet powerful platform for
exploring Weyl physics and related high-dimensional topolog-
ical phenomena with ultracold atoms.
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APPENDIX A: THE WEYL POINT SOLUTION

In the basis {|↑〉, |0〉, |↓〉}, the momentum space Hamilto-
nian is

Hk =
⎡
⎣δ̄↑ − k⊥·K⊥,↑

m J1 J3eikz

J1 δ̄0 − k⊥·K⊥,0

m J2

J3e−ikz J2 δ̄↓ − k⊥·K⊥,↓
m

⎤
⎦ + k2

⊥
2m

,

(A1)

with δ̄s = δs + K2
⊥,s

2m . We can redefine the Fermi energy EF as
the zero-energy point and rewrite the Hamiltonian as

Hk =
⎡
⎣δ̄↑ − k⊥·K⊥,↑

m J1 J3eikz

J1 δ̄0 − k⊥·K⊥,0

m J2

J3e−ikz J2 δ̄↓ − k⊥·K⊥,↓
m

⎤
⎦

+ k2
⊥

2m
− EF . (A2)

The Weyl point corresponds to a twofold degeneracy with zero
energy, which requires that there exist a Fermi energy EF and
a momentum kW such that the above Hamiltonian is a rank-
1 matrix. At the Weyl points, EF and kW correspond to the
solutions of the following equations:

δ̄↑ − k⊥·K⊥,↑
m + E⊥ − EF

J1
= J1

− k⊥·K⊥,0

m + E⊥ − EF

= J3eikz

J2
,

δ̄↑ − k⊥·K⊥,↑
m + E⊥ − EF

J3e−ikz
= J1

J2
= J3eikz

δ̄↓ − k⊥·K⊥,↓
m + E⊥ − EF

.

(A3)

We have set δ̄0 = 0 without loss of generality. Therefore, we
have kW

z = 0 or π , and kW
⊥ is the solution of the equations,

J1J3eikW
z

J2
− J1J2

J3eikW
z

= k⊥ · (K⊥,0 − K⊥,↑)

m
+ δ̄↑,

J2J3eikW
z

J1
− J1J2

J3eikW
z

= k⊥ · (K⊥,0 − K⊥,↓)

m
+ δ̄↓.

(A4)

We always have solutions as long as J1–3 are nonzero and
K⊥,0 − K⊥,↑ is not parallel with K⊥,0 − K⊥,↓ [i.e., the three
points K⊥,s = (Kx,s, Ky,s) are not collinear], which share the

FIG. 6. (a) and (b) The Berry flux distributions on the surface
enclosing Weyl point W1 for the second and third bands, respectively.
(c) and (d) Spin tensor distributions as k varies on the loop L for
the second and third bands, respectively. The red lines show the
orientation of the ellipsoids, which are rotated by π (0) for the second
(third) band. Other parameters are the same as in Fig. 4.

same spirit as the recent study of Dirac degeneracy with
2D spin-orbit coupling [41,42]. The Fermi energy is given

by EF = (kW
⊥ )2

2m − J1J2

J3eikW
z

− kW
⊥ ·K⊥,0

m . We would like to point out

that, for pseudospin states represented by the atomic hyperfine
levels as in Refs. [41,42] (where the 2D Dirac degeneracy is
sensitive to the Raman-laser polarizations), it is not easy to
generalize the 2D Dirac degeneracy to 3D Weyl degeneracy.

APPENDIX B: BERRY FLUX AND SPIN TEXTURES
ON DIFFERENT SURFACES

As we discussed in the main text, we have C ≡
[C1, C2, C3] = [−1, 1, 0] for the Weyl point W1 and C =
[0, 1,−1] for W2. When both W1 and W2 are enclosed by
S, we have C = [−1, 2,−1]. In Fig. 4(a) in the main text,
we plot the Berry curvature distribution of the first band
around W1. Figures 6(a) and 6(b) show the corresponding
Berry curvatures for the other two bands, and we see that
the total flux for the second (third) band is quantized to 1
(0). Such nontrivial topology can also be characterized by
the spin (vector and tensor) textures. For the first band, the
spin tensor is rotated by π on the loop L: kx = rS cos θ, ky =
rS sin θ, kz = 0 with θ ∈ [0, 2π ), and the spin vector crosses
the center of the Bloch sphere once [as shown in Figs. 4(c)
and 4(d) in the main text], leading to the generalized solid
angle γF = 0, γT = π . Similarly, for the second band which
is also nontrivial around W1, the spin tensor is also rotated
by π on the loop L [see Fig. 6(c)], whereas the spin vec-
tor crosses the center of the Bloch sphere three times [see
Fig. 4(d) in the main text], leading to the generalized solid
angle γF = 0, γT = π . For the trivial third band around W1,
neither π rotation for the spin tensor nor Bloch center crossing
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FIG. 7. (a) and (b) The Berry flux and spin vector distributions
of the first band on the surface enclosing both Weyl points W1 and
W2. A spin vortex (black dot) is located at kz = 0. (c) and (d) The
Berry flux and spin vector distributions of the second band on the
surface enclosing both Weyl points W1 and W2. Six spin vortices (red
and black dots) are located at kz = 0 and kz = π . The radius of the
cylinder is 1, other parameters are the same as in Fig. 4.

for the spin vector would exist [see Fig. 6(d)], leading to the
generalized solid angle γF = 0, γT = 0. We may also con-
sider a different loop L′: kz = rS cos θ, kx = rS sin θ, ky = 0
with θ ∈ [0, 2π ) around W1, and the spin textures are quite
similar with the loop L.

When both W1 and W2 are enclosed by the momentum
surface S, the Berry flux is quantized as C = [−1, 2,−1] [as
shown in Figs. 7(a) and 7(c) for the first two bands where S is
a cylinder covering the whole Brillouin zone in kz]. The spin
vector distributions are shown in Figs. 7(b) and 7(d) for the
first two bands. We see that there is a vortex at kz = 0 for the
first band, and six vortices (three at kz = 0 and the other three
at kz = π ) for the second band. Whereas the Berry flux and
spin distributions for the third band are similar with that for
the first band, except that the vortex is located at kz = π .

APPENDIX C: GEOMETRIC REPRESENTATION
OF BERRY FLUX

Consider the parameter τ -dependent Hamiltonian H (τ ).
For an arbitrary loop in the parameter space τ ∈ [τi, τf ] with
the Hamiltonian satisfying H (τi ) = H (τf ), the corresponding
Berry phase of a given gapped eigenstate is,

γ = i
∫

dτ 〈�(τ )|∂τ |�(τ )〉 + γf,i, (C1)

where |�(τ )〉, a smooth function of τ , is the eigen-
state of H (τ ), and γf,i is the gauge difference be-
tween two ends of the loop that is given by |�(τf )〉 =
eiγf,i |�(τi )〉. We choose four parameters F (τ ), φF (τ ), θF (τ ),
and φT (τ ) to ensure a smooth wave-function |�(τ )〉 =
|�[F (τ ), φF (τ ), θF (τ ), φT (τ )]〉. Substitute Eq. (6) into

Eq. (C1), we obtain

γ =
∫

[F dφT + F cos(θF )dφF ] + γf,i, (C2)

with γf,i = [φF (τi ) − φF (τf )] + [φT (τi ) − φT (τf )]. We now
define the generalized solid angle on the loop for the spin
vector and tensor as γF and γT so that

γF ≡ [φF (τi ) − φF (τf )] +
∫

F cos(θF )dφF ,

γT ≡ [φT (τi ) − φT (τf )] +
∫

F dφT , (C3)

γ = γF + γT .

From the definition, we see that γF (γT ) corresponds to the ro-
tation of the spin vector (tensor). As an example, we consider
the loop L in momentum space (by replacing the parameter
τ with k) and find that γF = 0, γT = π . For a small enough
loop, the Berry phase γ gives the local Berry flux through the
surface enclosed by the loop.

We want to emphasize that, to ensure a smooth wave-
function |�(τ )〉, F (τ ), φF (τ ), θF (τ ), and φT (τ ) should also
be a smooth function of τ except the points where 〈F〉 crosses
the z axis on or inside the Bloch sphere, where φF (τ ), θF (τ ),
and φT (τ ) may have jumps. We can simply remove these
points in the integral that do not affect the final results.

APPENDIX D: MAJORANA STAR REPRESENTATION
OF BERRY FLUX

An arbitrary spin-1 quantum state can be written as |�〉 =∑
s fs|s〉, and we will use s = −1, 0, 1 to represent the spin

state ↓, 0,↑ for convenience. We can rewrite the spin-1 basis
using the two-mode boson basis with |s〉 = (c† )1+s (d† )1−s

(1+s)!(1−s)! |∅〉,
then, the state can be factorized as |�〉 = 1

N
∏2

j=1 α
†
j |∅〉 with

N as the normalization coefficient and α
†
j = cos(θ j/2)c† +

sin(θ j/2)eiϕ j d†. If we denote c†|∅〉 and d†|∅〉 as the spin-
1/2 basis, then, the above factorization will give out two
pairs of parameters (θ j, ϕ j ) which corresponds to two Ma-
jorana stars m j = (sin θ j cos ϕ j, sin θ j cos ϕ j, cos θ j ) on the
Bloch sphere. The parameters are determined by [55] q j =
tan(θ j/2)eiϕ j with q1 and q2 as the roots of the equation∑2

j=0
(−1) j f1− j√

j!(2− j)!
q2− j = 0. The Berry phase accumulated along

a loop can be formulated as [55,71]

γ = i
∫

dτ 〈�(τ )|∂τ |�(τ )〉 + γf,i

= −1

2

∮
m1 × m2 · (dm1 − dm2)

3 + m1 · m2

−
2∑

j=1

1

2

∮
(1 − cos θ j )dϕ j + γf,i. (D1)

The first term arises from the correlations between the two
Majorana stars, and the second term denotes the solid angles
traced out by them. For the loop L in Fig. 4(e), γf,i and the
correlation term are both zero, and the Berry flux is deter-
mined solely by the solid angle traced out by the two Majorana
stars.
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