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Majorana corner pairs in a two-dimensional s-wave cold atomic superfluid
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We propose a method to prepare Majorana pairs at the corners of imprinted defects on a two-dimensional
cold-atom optical lattice with s-wave superfluid pairing. Different from previous proposals that manipulate
the effective Dirac masses, our scheme relies on the sign flip of the spin-orbit coupling at the corners, which
can be tuned in experiments by adjusting the angle of incident Raman lasers. The Majorana corner pairs are
found to be located at the interface between two regimes with opposite spin-orbit coupling strengths in an
anticlockwise direction and are robust against certain symmetry-persevered perturbations. Our work provides
a way for implementing and manipulating Majorana pairs with existing cold-atom techniques.
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I. INTRODUCTION

Majorana zero modes (MZMs) have attracted great atten-
tion in past decades owing to their non-Abelian exchange
statistics and potential applications as topologically protected
qubits [1,2]. They also exhibit significant physics in a range of
disciplines such as nuclear and particle physics [3]. Strenuous
efforts to search for MZMs are underway in both theories and
experiments. In recent years, a variety of schemes to realize
Majorana excitations have been proposed [4–18] by utiliz-
ing p-wave superconductors (SCs) or superfluid (SFs) [4,5],
or SCs and SFs with effective p-wave paring via spin-
orbit coupling (SOC) and s-wave pairing [6–10]. Remarkable
experimental progress has been made in condensed-matter
systems [19–24]. The experimental realization of SOC in ul-
tracold atomic gases offer another clean platform to explore
Majorana physics [25–31]. In these platforms the interplay
among SOC, Zeeman fields, and s-wave interactions could
produce non-Abelian topological superfluids (TSFs) that host
Majorana excitations. There have been several tantalizing
proposals for realizing and tuning Majorana excitations,
for example, by creating topological defects (such as SF
vortices or lattice dislocations) or one-dimensional defect re-
gions [32,33].

The emergence of Majorana excitations can be intuitively
understood by the low-energy theory. A pair of MZMs ex-
ists at the kinks where the pairing potential or SOC changes
sign (which corresponds to the sign change of Dirac mass
or velocity in the Jackiw-Rebbi model). In solid-state mate-
rials, the SOC kinks are difficult to tune, while the kinks of
pairing potentials can be realized through Josephson junc-
tions in superconducting nanowires, as well as the corners
and hinges in recently proposed higher-order topological
SCs (TSCs) [34–47]. In particular, for two-dimensional (2D)
second-order TSCs, the bulk topology of the 2D system of-
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fers one-dimensional (1D) edge modes, which have different
topologies for adjacent edges due to the change of the pair-
ing sign, leading to zero-energy Majorana Kramers pairs or
Majorana modes at corners [42–45]. On the other hand, in
cold atomic system, the kinks of pairing potentials may be
obtained by soliton excitations [48–50]. However, these cold
atomic systems suffer from dynamical instability in the pres-
ence of perturbations. Thus proposals for realizing robust
MZMs in atomic systems, through other manners like SOC
kinks, are highly in demand.

In this paper we propose feasible schemes to realize SOC
kinks using trapped ultracold fermionic atoms on a 2D optical
lattice and show that our system supports Majorana pairs in a
vortex-free configuration. The main results are listed below:

(i) Effective 1D modes on a rectangular geometry would
emerge in the 2D system through engineering on-site po-
tential of the outer rectangular region. In the presence of
1D equal Rashba-Dresselhaus (ERD) SOCs, Majorana corner
pair emerges at the corner of the rectangle with a proper
s-wave pairing.

(ii) Each edge of the rectangular defect is characterized by
a 1D topological SF in the chiral orthogonal (BDI) class, and
a Majorana pair exists at the interface of two adjacent edges
which has different signs of SOC (clockwise or anticlockwise
along the defective geometry). Our system is in analog with
the higher-order TSCs, except that the low-energy 1D model
is induced by the outer rectangular region rather than the bulk
topology, and the MZMs are induced by SOC kinks rather
than pairing kinks between two adjacent boundaries [42,43].
Our system is more concise and experimentally friendly, since
no tricky unconventional pairings, like d wave or s± wave, are
required.

(iii) Our system can be realized with currently already
established experimental techniques in cold atoms, including
1D ERD SOC by Raman lasers [25,26], single-site addressing
in 2D optical lattices [51–55], and tunable s-wave interaction
through Feshbach resonance [56,57].
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FIG. 1. Illustration of system setup on a 2D optical lattice, where
two counterpropagating Raman beams are incident with angle θ . A
dip potential is applied on a rectangle geometry (indicated by the blue
and red curves) through single-site addressing. Under the configu-
ration θ = π/4, the sign of effective SOC is positive (+)/negative
(−) on the blue/red lines in edge coordinate along the arrows. Two
spheres (encircled by the red dashed oval) at the interface denote
the Majorana corner pair (MCP). The inset above shows the level
diagram.

(iv) The Majorana corner pair is robust against shape de-
formation of the defective rectangle, even to the extent of
a defective loop. In addition, the SOC direction dictates on
which corners the Majorana pair resides. Therefore the in-
cident direction of Raman lasers can be used to manipulate
Majorana pairs.

The paper is organized as follows. In Sec. II we first intro-
duce the Hamiltonian with 1D ERD SOC on optical lattices
and obtain the phase diagram consisting of metal and s-wave
SF phases. In Sec. III, we study the case with a defective
outer rectangular region and find Majorana pairs emerge at
the corners. We extend the discussion to a ring-shaped geom-
etry in Sec. IV, where Majorana pairs arise naturally due to
soft domain walls of SOC. Finally, we make conclusions and
discussions in Sec. V.

II. SPIN-ORBIT-COUPLED s-WAVE SUPERFLUIDS
ON 2D OPTICAL LATTICES

We utilize atomic hyperfine states as the pseudospin states
|↑〉 and |↓〉, as illustrated in Fig. 1. The SOC is synthe-
sized by two counterpropagating Raman lasers coupling the
two hyperfine states. The single-atom motion in 2D real
space is described by the Hamiltonian Ĥ0,a = �k2

2m0
+ δ

2σz +
(�e2i�k0·�r |↓〉〈↑| + H.c.), where the reduced Planck constant h̄
has been set to be 1, � ∝ �1�

∗
2 is the strength of Raman

coupling, and �k0 = k0,x�ex + k0,y�ey is the wave vector of the
Raman laser. The off-diagonal terms correspond to a spin-flip
process accompanied by a momentum transfer of 2�k0, describ-
ing the SOC effects. The detuning term reads δ = ωz − δω,
where ωz > 0 is the energy difference between these two

hyperfine states, and δω denotes the frequency difference
between two Raman laser beams. In the following we assume
that other hyperfine levels are far off-resonance under the two-
phonon process, for example, by quadratic Zeeman shift. The
Hamiltonian is first transformed by a unitary matrix, namely,
Ĥ0,b = UĤ0,aU −1, where U = diag(e−i�k0·�r, ei�k0·�r ). We then
perform other pseudospin rotations Ũ = e−i π

4 σz e−i π
4 σy to ob-

tain Ĥ0 = Ũ Ĥ0,bŨ †, which can be written as

Ĥ0 = 1

2m0
[(kx + k0,xσy)2 + (ky + k0,yσy)2] + δ

2
σy − �σz.

(1)
The Raman transition produces a desired ERD SOC. In the
following we assume δ = 0 for convenience.

The 1D system suffers from strong quantum fluctua-
tions, which could eliminate s-wave SF order, together with
the Majorana modes. This motivates us to investigate the
physics in 2D, where quasi-long-range SF order exists below
the Berezinskii-Kosterlitz-Thouless (BKT) transition temper-
ature. We concentrate on the lowest (nearly) degenerate bands
for constructing a tight-binding model. From Eq. (1), through
the operator �̂(�r) = ∑

i,σ ĉi,σ ψσ (�r − �ri ) with ψσ (�r − �ri ) the
Wannier function at site i, we obtain a second-quantization
formula:

Ĥ0s =
∑

i

(−txĉ†
i ĉi+ex − tyĉ†

i ĉi+ey − itsoxĉ†
i σyĉi+ex

− itsoyĉ†
i σyĉi+ey

) + H.c. − hzĉ
†
i σzĉi − μĉ†

i ĉi, (2)

where tx = t0 cos (k0 cos θ ), ty = t0 cos (k0 sin θ ), tsox =
t0 sin (k0 cos θ ), tsoy = t0 sin (k0 sin θ ), and the bare
hopping strength reads t0 = − ∫

d�rψ∗
σ (�r − �ri )

(
k2

x +k2
y

2m0
+ Vlat )ψσ (�r − �ri+1). Here we have chosen the basis

ĉi = (ĉi,↑, ĉi,↓)T and denoted hz = �. The incident angle θ

is illustrated in Fig. 1. The lattice spacing is set to be a = 1.
Hereafter, we set t0 = 1/ cos [k0 sin (π/4)] = 1/ cos(

√
2π/4)

for convenience. When θ = π/4, we have approximately
tsox = tsoy ≈ 2tx = 2ty.

We consider an attractive SU(2)-invariant interaction
Ĥint = −∑

i U n̂i,↑n̂i,↓ and study the superfluid phase un-
der mean-field approach by solving the s-wave super-
fluid order parameter 
s = U 〈ci,↓ci,↑〉 self-consistently. The
Bogoliubov–de Gennes (BdG) Hamiltonian in the Nambu

basis �k = (ck↑, ck↓, c†
−k↓,−c†

−k↑)
T

is described by Ĥs =∑
k �

†
k H (k)�k with

H (k) = (εk + γkσy)τz − hzσz + 
sτx, (3)

where εk = −2(tx cos kx + ty cos ky) − μ, γk = 2(tsox sin kx +
tsoy sin ky), and σ and τ are Pauli matrices acting on the spin
and particle-hole spaces, respectively. By minimizing free
energy with respect to the order parameter 
s and chemical
potential μ, we may derive the following self-consistent equa-
tions:

1 = U

2Nl

∑
ν=±,k

tanh (βξk,ν/2)

ξk,ν

(
1 + νh2

z

gk

)
, (4)

n f = 1 − 1

Nl

∑
ν=±,k

εk
tanh (βξk,ν,/2)

ξk,ν

(
1 + νm2

k

gk

)
, (5)
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FIG. 2. (a) SF order parameter 
s vs interaction U and chem-
ical potential μ. A phase transition occurs between metal (M) and
superfluid (SF) phases. (b) Similar as panel (a) but plotted with
Bogoliubov quasiparticle energy gap Eg. In both panels we take
tx = ty = 1, tsox = tsoy = 2, hz = 1.4.

where n f is the particle filling factor, Nl is the number of
lattice sites, and other parameters are defined as β = 1/(kBT ),
with kB the Boltzmann constant and T the temperature,
ξk,ν=± =

√
ε2

k + 
2
s + m2

k + 2νgk , gk =
√

ε2
k m2

k + 
2
s h2

z , and
mk =

√
h2

z + |γk|2 . By numerically solving Eqs. (4) and (5),
we obtain phase diagrams at zero temperature for pairing or-
der 
s and quasiparticle energy gap Eg in Figs. 2(a) and 2(b),
respectively. Figure 2(a) confirms the phase transition from
a metal (M) phase to an s-wave SF. From panel (b) we find
a finite gap for Bogoliubov quasiparticle excitations in the
proper parameter region in the SF phase. The energy gap also
survives on a finite-size sample and could protect Majorana
modes from lower extended states.

III. MAJORANA CORNER PAIRS ON A TOPOLOGICAL
DEFECTIVE RECTANGULAR GEOMETRY

Given a proper local dip potential, the one-dimensional
defect region enjoys a nontrivial topology belonging to the
BDI class. It can be characterized through a winding number,
which is discussed in Appendix A. Similarly, with a local dip
μd , we can get a defective outer rectangular region in the 2D
optical lattice as illustrated in Fig. 1, where SOC domain walls
(anticlockwise or clockwise) naturally arise at two corners.
In the following we will first focus on the continuum limit
to explore the nature of the emerged Majorana pairs, supple-
mented with self-consistent numerical calculations on a 2D
optical lattice.

We assume that with appropriate μd , the outer rectangular
region enters the TSF phase while the rest remains trivial. As a
result, we could assume that the topological outer rectangular
region is isolated from the 2D bulk. The numerics performed
on a 2D optical lattice with an imprinted defective rectangular
outer region also supports this assumption later. From Eq. (3)
the low-energy Hamiltonian expands around �k = (0, 0) on
edges m = I, II, III, IV (see Fig. 1) and is then given by

Hm = tmk2
mτz + 2ts,mkmσyτz − μmτz − hzσz + 
s,mτx, (6)

where tI = tIII = ty, tII = tIV = tx, kI = kIII = ky, kII = kIV =
kx, ts,I = ts,III = 2tsoy, and ts,II = ts,IV = 2tsox. The on-site
chemical potential is μm = μ + 2(tx + ty) − μd , with μd the
dip potential and 
s,m the s-wave pairing on each edge. With-
out loss of generality, we set incident angle of Raman lasers

θ = π
4 such that tx = ty = t , tsox = tsoy = tso, μm = μedge =

μ + 4t − μd , and assume the s-wave SF order parameter is
nearly uniform on the four edges 
s,m = 
edge. For later
convenience, we take an “edge coordinate” s, in which we take
the anticlockwise direction as positive. In such a coordinate,
the low-energy edge Hamiltonian reads

Hedge = −tτz
∂2

∂s2
− iα(s)σyτz

∂

∂s
− μedgeτz − hzσz + 
edgeτx,

(7)
with α(s) = −2tso, 2tso, 2tso, −2tso for edges I–IV, respec-
tively. Remarkably, while the terms 
edge and μedge remain the
same on the four edges, the effective coupling α(s) changes
sign at two of the four corners [the corner between the edges
I (III) and II (IV)], forming two SOC domain walls as il-
lustrated in Fig. 1. This will give rise to a Majorana pair if
h2

z > μ2
edge + 
2

edge. Specifically, at the corner between edges
I and II (corner s = 0 in our coordinate), two orthogonal wave
functions for MCMs are given by

�0,± = C±e−η±|s|(ei φ±
2 |y+〉σ |y±〉τ + e−i φ±

2 |y−〉σ |y∓〉τ
)
. (8)

Here C± are normalization constants and eiφ± =
hz[i(αη±∓
edge )−(tη2

±+μedge )]

(tη2±+μedge )2+(αη±∓
edge )2 , where η± = 1
2

√
− 2κ

3 + δ ∓
1
2

√
− 4κ

3a − δ + ζ± > 0, ζ± = ∓2d/(a
√−2c/(3a) + δ, δ =

3√2δ1

3a 3
√

δ2+
√

−4δ3
1+δ2

2

+
3
√

δ2+
√

−4δ3
1+δ2

2

3 3√2a
, δ1 = κ

2 + 12ae, δ2 =
2κ

3 + 27ad2 − 72aκe, a = t2, κ = α2 + 2tμedge,
d = −2α
edge, and e = 
2

edge − h2
z + μ2

edge. The vectors
|y±〉σ and |y±〉τ are eigenstates of operators σy and τy,
respectively. Following a similar approach, we could also find
two Majorana modes at the corner between edges III and IV
(see Appendix B for details). We emphasize that as long as
the four edges are in the TSF phase, the very existence of
Majorana pairs is robust against the fluctuations of chemical
potential and the SF order parameter.

With the above understanding of continuum systems, we
now proceed to study the discrete cases on an optical lattice
shown in Fig. 1. The total Hamiltonian now becomes

ĤBdG = Ĥs +
∑
i∈�

μd ĉ†
i ĉi, (9)

where i ∈ � enumerates each site with the dip potential
(a rectangular geometry in this case). The local s-wave
superfluid order parameter in real space is determined in
a self-consistent manner [15], as well as the quasiparti-
cle energy spectra and wave functions. On the defective
outer rectangular region, the system is topological once
hz >

√
μ̃2 + 
2

s and μ̃ = μ + 2tx + 2ty − μd . In our self-
consistent numerical calculations, we take the lattice sizes
nx = ny = 30 and the sizes of outer rectangular region nd

x =
nd

y = 22. The SF order parameter 
s,i is shown in Fig. 3(a),
which has a constant phase across the entire system. Fig-
ure 3(b) shows the quasiparticle energy spectrum, where four
Majorana bound states (two Majorana corner pairs) exist in
the energy gap. A small energy splitting is observed as a
result of the finite-size effect. Figure 3(c) shows the density
distribution of the bounded Majorana corner states, which
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FIG. 3. (a) Self-consistent s-wave pairing order parameters in
real space. (b) Energy-level diagrams. (c), (d) The real-space distri-
butions of MZMs. For all panels we choose tx = ty = 1, tsox = tsoy =
2, μ = −7.95, μd = −4.0, h = 1.4, U = 6.3. The incident angle is
θ = π/4 in (a)–(c) and θ = −π/4 in (d).

clearly demonstrates its localization at the corners of the outer
rectangular region.

The outer rectangular region of our system corresponds
a 1D topological model in BDI class characterized by
a Z topological invariant, which can support many zero
Majorana modes in principle. The Majorana corner modes
emerge since the corner is the intersection of two 1D topolog-
ical chains with opposite winding numbers w = ±1, leading
to 
w = 2 zero modes. They are protected by the underlying
generalized time-reversal (with T 2 = 1), particle-hole, and
chiral symmetry in the one-dimensional region. The Majorana
pairs here are different from the previous time-reversal sym-
metry (T 2 = −1) protected Majorana Kramers pair in the Z2

topological class.
The incident angle of Raman lasers can change the SOC

and the nearest-neighbor hopping, and thus alter the Majorana
bound states. Figures 4(a) and 4(b) illustrate the correspond-
ing phase diagram with respect to μ-θ and μd -θ , where
Majorana corner pairs exist in the topological region (T). It
is found that the Majorana pairs are also robust to certain

FIG. 4. Phase diagram for 2D system with the defective outer
rectangular region. In region “T,” Majorana bound states exist at
corners. In (a), μd = −4.0, hz = 1.4, U = 6.3 are used. In (b),
μ = −7.8, hz = 1.4, U = 6.3 are used.

FIG. 5. (a) Illustration of a ring trap in which the atoms are con-
fined. Two counterpropagating Raman lasers with wave vector ±�k0

couple the atomic hyperfine states. The notations + and − indicate
the sign of SOC. Two spheres encircled by the red dashed circle
denote a MCP. (b) The SOC term α(φ) plotted to varying polar angle
φ. (c) The eigenspectrum computed through plane-wave expansion.
(d) The particle density ρMZ of Majorana zero modes vs the angle φ.
The parameters are chosen as α̃0 = 0.04, η = 0.005, μ′ = 0.2, hz =
−1.4, 
s = 0.8.

variation of the incident angle θ . We remark that if the sign of
θ is reversed, the Majorana pairs appear at another two corners
(the interfaces of II–III and I–IV), as shown in Fig. 3(d), which
can be compared with Fig. 3(c). Thus our proposed setup
provides better tunability for manipulating Majorana bound
states.

If we consider a harmonic trap with the lowest potential
energy at the center of the defect rectangle, the corner region
would first enter the topologically trivial phase, and the defect
rectangle was divided into four topological 1D lines (one on
each edge of the defect rectangle). Each topological line hosts
two Majorana bound states. Due to hybridization of Majorana
modes within each topological line, there exist eight bound
states with finite energy.

IV. MAJORANA CORNER PAIRS ON A RING GEOMETRY

In this section we study the case with a ring-shaped defect
line. Here the optical lattice is removed, and we focus on the
low-energy effective 1D model for simplicity. The effective
model is illustrated in Fig. 5(a) and we find that soft domain
walls of SOC naturally arise on the ring, which leads to the
emergence of Majorana corner pairs.

Without loss of generality, we assume the momentum kick
by Raman lasers is along the x direction. Under a spin rotation
σy → σx with k0,y = 0 in Eq. (1), the SOC has the form
α0kxσx, where the coupling constant is given by the ratio of the
laser wave vector and atomic mass, i.e., α0 = k0/m0. Hence in
the continuum limit the effective Hamiltonian reads

H = k2

2m0
τz + α0kxσxτz − μτz + hzσz + 
sτx, (10)
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where 
s is an s-wave SF order. For simplicity, we set 
s to
be real. The relation hz >

√
μ2 + 
2

s holds in the topological
regions.

In a polar coordinate (ρ, φ), the above Hamiltonian be-
comes a function of polar angle φ on a ring with given radii
ρ, i.e.,

H(φ)= − η∂2
φτz + iα̃0 sin φ

∂

∂φ
σxτz − μ′τz + hzσz + 
sτx,

(11)
where η = 1

2m0ρ2 , α̃0 = α0
ρ

, and μ′ = μ − k2
0

2m0
(more details

are discussed in Appendix C). The Hamiltonian H(φ) has
particle-hole symmetry PH(φ)P−1 = −H(−φ), where P =
σyτyK and K denotes the complex conjugation. It also pre-
serves a generalized time-reversal symmetry T H(φ)T −1 =
H(−φ) with T = σzK. The combination of P and T leads
to the chiral symmetry C: CH(φ)C−1 = −H(φ), with C =
PT = iσxτy. Therefore the Hamiltonian belongs to BDI class
and can be characterized by a Z topological invariant [58,59].

In Eq. (11) the SOC α(φ) = α̃0 sin φ changes sign at φ =
0, π , as shown in Fig. 5(b). Specifically, we have α(φ) > 0
if φ ∈ (0, π ) and α(φ) < 0 if φ ∈ (π, 2π ). Hence the system
can be divided into two segments. Both belong to the BDI
class but possess opposite topological invariant. The inter-
faces are determined by φ = 0 and π , corresponding to two
“soft” domain walls in the sense that the SOC term changes
smoothly across these two points. From Eq. (11), the Hamilto-
nian H(φ) is invariant under a 2nπ rotation if n is an integer.
Therefore to solve the eigenvalues of H(φ), we assume the
following trial solution:

�(φ) = (ua(φ), ub(φ), uc(φ), ud (φ))T
, (12)

where uν=a,b,c,d (φ) = ∑
m νmeimφ and m is an integer. By

solving the Schrödinger equation H(φ)�(φ) = E�(φ), the
eigenvalues are obtained as shown in Fig. 5(c). See Ap-
pendix C for more details. It is clear that four Majorana modes
emerge (with an numerical error about E ≈ 10−4). One Majo-
rana corner pair consisting of two Majorana modes localizes
at φ = 0, and the other pair localizes at φ = π , as illustrated
in Fig. 5(a). This is also demonstrated by the particle density
distribution ρMZ of Majorana modes, as shown in Fig. 5(d). We
remark that a toroidal Bose-Einstein condensate has been cre-
ated in an all-optical trap [60]. We expect our scheme could be
reached with similar techniques and additional Raman lasers.

V. DISCUSSION AND CONCLUSION

From the effective low-energy theory of TSFs, it is well
known that Majorana modes would emerge if the sign of the
Dirac mass changes, and most previous proposals are based
on this principle. In this paper we propose an alternative ap-
proach to implement Majorana modes (Majorana corner pairs)
through tuning the effective SOC. By loading Fermi gases on
2D optical lattices subjected to a 1D ERD SOC, we can find
a SF phase under appropriate s-wave interaction and Zeeman
field. Using single-site addressing techniques, we could engi-
neer defective geometries, which are topologically nontrivial,
on the 2D optical lattice. From the viewpoint of low-energy
theories, an outer rectangular region consists of two TSFs
characterized by distinct topological invariants whose sign is

determined by the sign of SOC in edge coordinate. Obvi-
ously, the sign of SOC changes at two corners on the outer
rectangular region. At the interface of two distinct TSFs, a
topologically protected Majorana pair (two Majorana modes)
naturally arises according to the index theorem. For TSF with
1D ERD SOC on a ring, two soft SOC domain walls exist,
and two Majorana pairs also appear near the domain walls.
In principle, as long as two effective 1D SFs are topological
with different topological invariants w = ±1, the Majorana
pair (
w = 2 Majorana modes) will emerge at the interface. It
is robust as long as the perturbations preserve three underlying
symmetries (P , T , C) of the system.

We emphasize that the Majorana corner pair in the
context differs from those in second-order TSCs in two di-
mensions. First, for second-order TSCs with time-reversal
symmetry [42,43], 1D edge modes evolve from the higher-
dimensional bulk of the topological insulators. However, in
our scheme the 1D modes originate from the defect geometry.
Second, in a higher-order TSC, a momentum-dependent SC
pairing (s± or d-wave) leads to a Dirac mass kink at the corner
of the sample and then induces the Majorana Kramers pair. In
contrary, our proposal utilizes the sign reversal of effective
SOC on the edges and lacks Kramers degeneracy.

In summary, we propose a distinct scheme to implement
Majorana pairs in an atomic platform. The coordinate of the
Majorana pair depends on the position of the SOC domain
wall, which can be tuned by the directions of the Raman laser
beams. Moreover, our system is free of dynamical instability
such that the MZM has a longer lifetime. Our work opens
the possibility of implementing robust Majorana pairs and the
associated non-Abelian braiding in cold atoms.
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APPENDIX A: MAJORANA MODES AT THE ENDS
OF TOPOLOGICAL DEFECTIVE CHAIN

In this section we show how a topologically nontrivial
defective chain can be implemented through on-site poten-
tial engineering on 2D optical lattices. For a 1D system
with SOC and SF order, the system is topological if hz >√

(μ̃ − μd )2 + 
2
s , where μ̃ = μ + 2tx + 2ty [13–16]. Refer-

ence [15] shows Majorana fermions may be generated in a 2D
optical lattice with 1D ERD SOC along the x direction. This
motivates us to demonstrate the existence of Majorana bound
states in genuine 2D systems with 1D defects, where the SOC
lays along �ex + �ey direction. Through single-site addressing, a
potential could be locally applied to a given site.
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FIG. 6. (a) The amplitude of SF order parameter in real space.
(b) The density distribution of the MZM. (c), (d) z(kx ) in the complex
plane for opposite winding number. In all panels we set tx = ty =
1, hz = 1.4, μ = −8.0, μd = −4, 
s = 0.3, and 
a = 0.11. We
choose tsox = tsoy = 2 in (a–c) and tsox = tsoy = −2 in (d).

Imposing a 1D potential dip μd , we have the following
Hamiltonian:

ĤBdG = Ĥs +
∑
i∈−

μd ĉ†
i ĉi, (A1)

where i ∈ − denotes the sites (ix, iy) satisfying iy = nyc . In
self-consistent numerical calculations, we take a lattice with
nx = 100, ny = 9, and nyc = 5 under open boundary condi-
tions, where nx and ny denote the site number along the x
and y directions. Figures 6(a) and 6(b) present self-consistent
numerical results. Figure 6(b) shows a density profile of the
zero-energy mode (E ≈ 10−4). It demonstrates the existence
of MZMs even in a genuine 2D system. From self-consistent
BdG numerical results, the SF order parameter is almost
homogeneous along the x direction, as shown in Fig. 6(a).
Thus with periodic boundary conditions, the system has a
translation symmetry along the x direction so that momentum
kx is a good quantum number. The 2D optical lattice can be
regarded as a layered 1D chain with transverse tunneling and
SOC effects. The effective Hamiltonian is then written as

HBdG(kx ) = κ0h0(kx ) + μdκcσ0τz + 
aκcσyτy

− tyκxσ0τz − tsoyκyσyτz. (A2)

Here the matrix κ acts on chain space, with κ0 the identity
matrix, (κc)i,i = 1 for i = nyc and 0 otherwise, (κx )i, j = 1
for |i − j| = 1, and (κy)i,i∓1 = ∓i and 0 otherwise. The term
proportional to μd (
a) describes the dip potential (the SF or-
der) difference between the central chain and other individual
chains. The term proportional to ty (tsoy) describes the hopping

(SOC) along the y direction. The following Hamiltonian,

h0(kx ) = (−2tx cos kx − μ)σ0τz + 2tsox sin kxσyτz

+ hzσzτz + 
sσyτy, (A3)

describes the original uniform individual 1D chain along
the x direction. σ and τ are Pauli matrices acting on spin
space and particle-hole space, respectively. The above BdG
Hamiltonian HBdG(kx ) has intrinsic particle-hole symmetry P:
PHBdG(kx )P−1 = −HBdG(−kx ) with P = τ̃xK, τ̃x = τxσ0η0,
where σ0 is the 2 × 2 identity matrix, η0 is a Ns × Ns identity
matrix acting on the lattice site space, and K is the complex
conjugation. If the superfluid order parameter is real (or has
a constant phase that can be eliminated by gauge transforma-
tions), the Hamiltonian preserves a generalized time-reversal
symmetry T : T HBdG(kx )T −1 = HBdG(−kx ) with T = K. The
composite operation of P and T also leads to a chiral symme-
try C: CHBdG(kx )C−1 = −HBdG(kx ), with C = PT = τ̃x. From
the above symmetry analyses, the Hamiltonian belongs to the
BDI class, characterized by a Z topological invariant (winding
number).

The winding number w can characterize the topological
properties of the BdG Hamiltonian (A2) [17]. Because the
BdG Hamiltonian HBDG has chiral symmetry, it can be trans-
formed into an off-diagonal form in particle-hole space under
a unitary transformation U = e−i π

4 τy :

UHBdG(kx )U −1 =
(

0 B(kx )

BT (−kx ) 0

)
. (A4)

Here B(kx ) = B1(kx ) − iB2, where B1(kx ) = (−2tx cos kx −
μ)κ0σ0 + 2tsox sin kxκ0σy + hzκ0σz + μdκcσ0 − tyκxσ0 −
tsoyκyσy and B2 = (
sκ0σy + 
aκcσy). The winding number
is defined as [17]

w = − i

π

∫ π

0

dz

z(kx )
, (A5)

where z(kx ) = det [B(kx )]/| det [B(kx )]|. As shown in
Figs. 6(c) and 6(d) with hz >

√
(μ + 2tx + 2ty − μd )2 + 
2

s ,
the complex value of z(kx ) varies when kx changes from 0 to
π , indicating |w| = 1. By considering the trajectory of z(kx )
in the complex plane as kx changing from 0 to π , z(kx ) moves
from a point on the negatively real axis to the positive axis
while crossing the imaginary axis exactly once. It is clear that
the winding number w = −1 when tsox > 0 in topological
phase, as shown in Fig. 6(c), and the winding number w = +1
when tsox < 0 in topological phase, as shown in Fig. 6(d).
Namely, the sign of winding number for the one-dimensional
region is determined by the sign of SOC in the topological
phase.

APPENDIX B: LOW-ENERGY THEORY OF
TOPOLOGICAL SUPERFLUIDS ON A

DEFECTIVE RECTANGLE

Remarkably, from Eq. (7) the term 
edge does not change
sign, but the coefficient α(s) changes sign at two corners
of the defective outer rectangular region. This will give rise
to a Majorana pair at the corner where α(s) changes sign.
Hereafter, we will give the analytic solutions of Majorana
corner modes.
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According to the particle-hole symmetry of Hedge, i.e.,
{Hedge, σyτy} = 0, we have

Hedgeσyτy = −σyτyHedge. (B1)

It can be concluded that if there exist zero-energy states of
Hedge, these states are also eigenstates of σyτy. Therefore we
assume the zero-energy wave functions in the “edge coordi-
nate” s have the following forms:

�0,+ = f+(s)|y+〉σ |y+〉τ + g+(s)|y−〉σ |y−〉τ , (B2)

�0,− = f−(s)|y+〉σ |y−〉τ + g−(s)|y−〉σ |y+〉τ . (B3)

Then we have σyτy�0,± = ±�0,± and the Schrödinger equa-
tion at the corner between the edge I and II (corner s = 0)
is Hedge�0,+ = 0. Using the eigenvector � = [ f+(s), g+(s)]T ,
the above equation (B1) can be rewritten as(

t∂2
s + iα∂sσz + μedge − i
edgeσz + hzσx

)
� = 0. (B4)

We assume f+(s) = A+e−η+s, g+(s) = B+e−η+s (s > 0) and
write

(−itη2
+σz + αη+ − iμedgeσz − 
edge + hzσy)�̃ = 0, (B5)

with �̃ = (A+, B+)T . According to the vanishing determinant
of the above matrix, we obtain

η+ = 1

2

√
−2κ

3
+ δ − 1

2

√
−4κ

3a
− δ + ζ+ > 0, (B6)

where κ, δ, a, and ζ+ have been written explicitly in the main
text. Then we have A+/B+ = eiφ+ with

eiφ+ = hz[−(tη2
+ + μedge) + i(αη+ − 
edge)]

(tη2+ + μedge)2 + (αη+ − 
edge)2
. (B7)

At last, we get the MZM �0,+ at the corner between edges
I and II. Following a similar approach as in previous cal-
culations, we can get another zero-energy solution �0,− =
C−e−η−|s|(ei φ−

2 |y+〉σ ⊗ |y−〉τ + e−i φ−
2 |y−〉σ ⊗ |y+〉τ ) with C−

the normalization constant, where

η− = 1

2

√
−2κ

3
+ δ + 1

2

√
−4κ

3a
− δ + ζ− > 0, (B8)

eiφ− = hz[−(tη2
− + μedge) + i(αη− + 
edge)]

(tη2− + μedge)2 + (αη− + 
edge)2
, (B9)

and the coefficients κ, δ, a, and ζ− are listed in the main
text. In summary, there are two Majorana modes (a Majorana
corner pair) localized around the corner with the analytic
solution given in Eq. (8). Regarding the corner between III and
IV, there exists another SOC domain wall and we similarly
have a Majorana pair there.

APPENDIX C: LOW-ENERGY THEORY OF
TOPOLOGICAL SUPERFLUIDS ON A DEFECTIVE RING

The general Hamiltonian for a spin-orbit coupled Fermi
gas with s-wave Cooper pairing is given by

Hr = 1

2m0
(�k − k0 �σ )2 − μτz + hzσz + 
sτx, (C1)

where �k = −i �∇. Assuming spin �σ is along x and neglecting
the constant energy shift k2

0/(2m0), we get the Hamiltonian in
Eq. (10). In the polar coordinate,(�i

�j

)
=

(
cos φ − sin φ

sin φ cos φ

)(�eρ

�eϕ

)
. (C2)

The Laplace operator in Descartes and polar coordinates is
written as

�∇ = ∂x�i + ∂y �j = ∂ρ�eρ + 1

ρ
∂φ�eφ. (C3)

Then we have �k2 = −�∇ · �∇ = −(∂2
ρ + 1

ρ2 ∂
2
φ ) and

�k · (σx�i) = −i

[
cos φ∂ρ + 1

ρ
∂φ (− sin φ)

]
σx. (C4)

Finally, Eq. (10) can be rewritten as the following form:

H = 1

2m0

[
−

(
∂2
ρ + 1

ρ2
∂2
φ

)
− ik0

(
cos φ∂ρ − 1

ρ
sin φ∂φ

)

× σx − ik0

(
cos φ∂ρ − 1

ρ
sin φ∂φ

)
σx

]
τz − μτz

+ hzσz + 
sτx. (C5)

Consider ultracold atoms trapped in a ring-shaped trapping
potential, where the radii ρ is fixed. Terms with respect to ∂ρ

disappear. After substituting η = 1
2m0ρ2 , α̃0 = k0

m0ρ
= α0

ρ
, and

μ′ = μ − k2
0

2m0
, the Hamiltonian H becomes Eq. (11).

Because H(φ) is invariant under a 2nπ rotation with n
being an integer, we assume the wave functions take fol-
lowing form as �(φ) = [ua(φ), ub(φ), uc(φ), ud (φ)]T , where

FIG. 7. The real and imaginary parts of coefficients
(am, bm, cm, dm ) for the wave functions of four Majorana modes,
respectively. The parameters α̃0 = 0.04, η = 0.005, μ′ = 0.2, hz =
−1.4, and 
 = 0.8 are used for all panels.
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uν=a,b,c,d (φ) = ∑N
m=−N νmeimφ . Plugging H(φ) and �(φ) into

the Schrödinger equation H�(φ) = E�(φ), and matching
coefficients for eimφ , one can obtain a series of coupled equa-
tions as

Eam = (η2m2 − μ′ + hz )am + i
α̃0

2
(m − 1)bm−1

− i
α̃0

2
(m + 1)bm+1 + 
scm, (C6)

Ebm = iα̃0

2
(m − 1)am−1 − i

α̃0

2
[m + 1]am+1

+ (ηm2 − μ′ − hz )bm + 
sdm, (C7)

Ecm = 
sam + [−ηm2 + μ′ + hz]cm − i
α̃0

2
(m − 1)dm−1

+ i
α̃0

2
(m + 1)dm+1, (C8)

Edm = 
sbm − i
α̃0

2
(m − 1)cm−1 + i

α̃0

2
(m + 1)cm+1

+ [−ηm2 + μ′ − hz]dm. (C9)

By solving above coupled equations (C6)–(C9) with the
truncation bounds for m up to 50, the eigenenergies and corre-
sponding eigenfunctions �(φ) could be obtained. Figure 5(c)
in the main text presents the eigenspectrum, indicating that
there are four Majorana zero modes. The coefficients νm of
wave functions of four Majorana modes are plotted in Fig. 7.
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