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Topological and hyperbolic dielectric materials from chirality-induced charge-parity symmetry
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Parity-time (PT ) symmetry, originally conceived for non-Hermitian open quantum systems, has opened an
exciting avenue towards coherent control of light for significant applications. Here we propose a paradigm
towards non-Hermitian photonics based on the charge-parity (CP) symmetry, in which the charge conjugation
and parity symmetries are broken individually but preserved jointly. Such a symmetry-breaking scheme induces
a transition from dielectric to hyperbolic dispersions in chiral dielectrics, leading to lossless all-dielectric hy-
perbolic metamaterials. More interestingly, the CP-symmetry transition represents a non-Hermitian topological
phase transition that occurs at infinite energy and requires no explicit band gap closing. We further showcase
broad applications of CP-symmetric photonics such as an all-angle polarization-dependent beam splitter and
enhanced spontaneous emission. The CP symmetry opens an unexplored pathway for non-Hermitian topological
photonics by bringing new physics into strong chiral metamaterials, therefore providing a powerful tool for
engineering many promising applications in photonics and other related fields.
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I. INTRODUCTION

Originally conceived for open quantum systems [1], PT
symmetry was later introduced to photonics through the anal-
ogy between the Schrödinger equation and Maxwell equations
under paraxial approximation [2,3]. PT symmetry allows a
real eigenspectrum for a class of non-Hermitian Hamiltonians
[3,4], which support two distinct phases: PT symmetric (real
eigenfrequencies) and PT broken (both real and complex
eigenfrequencies), as illustrated in Fig. 1(a). The phase transi-
tion between them is characterized by the exceptional point
[5]. In photonics, a non-Hermitian Hamiltonian with PT
symmetry can be engineered through tuning optical gain and
loss of materials, which provides a powerful tool for shaping
the flow of light and yields novel applications in nonlinear
optics [6], lasing [7,8], unidirectional propagation [9], precise
sensing [10], topological photonics [11,12], etc.

The significance of PT -symmetric photonics naturally
raises the question of whether there is non-Hermitian pho-
tonics protected by other types of symmetries. The PT
symmetry for photonics is generally based on the parax-
ial approximation of Maxwell equations, which describe the
multiple-component electromagnetic field and could be non-
Hermitian even without optical gain or loss. This can be seen
from the fact that the Maxwell equation may exhibit a com-
plex spectrum in common media with only real permittivity
or permeability vectors. For example, the complex spectra in
metals are closely related to interesting phenomena like sur-
face plasmon polaritons and skin effects [13,14]. However, the
complex spectra in metals are not protected by any symmetry
and can be connected to real spectra in dielectrics through a
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zero-index point, at which the refractive index becomes zero
[15–18].

In this article, we propose a class of non-Hermitian pho-
tonics based on the CP symmetry of Maxwell equations,
where C represents charge conjugation. There are two distinct
phases: CP symmetric with real eigenfrequencies and CP
broken with complex eigenfrequencies. Such CP-symmetric
non-Hermitian photonics can exist, for instance, in a continu-
ous dielectric medium with proper chiral effects. An example
is provided in Fig. 1(b), where the spectra are twofold de-
generate. The transition between CP-symmetric and -broken
phases can occur at points, lines, or surfaces in either parame-
ter or momentum space. The transition points are analogous to
the exceptional points in PT symmetry in the sense of defec-
tive Hamiltonians; therefore, we still name them exceptional
points. However, at the exceptional points, the eigenfrequen-
cies (both real and imaginary parts) diverge [Fig. 1(b)] for the
CP symmetry, in contrast to the degeneracy at finite values for
the PT symmetry [see Fig. 1(a) and Appendix A].

The transition between CP-symmetric and -broken phases
is accompanied by a dramatic change in the photonic band
topology. In the CP-symmetric phase, the band is still dielec-
tric, with elliptical equal-frequency surfaces (EFSs), while in
the CP-broken phase, the band dispersion becomes hyper-
bolic, with indefinite bands. The hyperbolic band dispersion is
considered to be a unique feature of hyperbolic metamaterials
(HMMs) [19,20], which are usually implemented by creating
a metal-dielectric composite to achieve metal and dielectric
properties in orthogonal directions. HMMs have found great
applications in versatile fields like negative refraction [21,22],
enhanced spontaneous emission [23–27], superresolution
imaging [28,29], biosensing [30], control of critical coupling
[31], and topological photonics [32–34]. However, a
fundamental challenge that hinders the applications of
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FIG. 1. Eigenfrequency spectra for non-Hermitian photonics
with (a) PT and (b) CP symmetries. Solid blue and dashed orange
curves represent the real and imaginary parts of the eigenfrequencies.
For the CP case, each curve is twofold degenerate with different
eigenstates. The green vertical lines indicate the exceptional points,
at which the Hamiltonian is defective. The driving terms for the sym-
metry breaking are on-site gain and loss γg and the chiral effect along
the z direction γz. At the exceptional point, a pair of eigenmodes
becomes degenerate at ω = 0 for PT symmetry breaking (see also
Appendix A) but diverges for CP symmetry breaking. The spectrum
for the latter case is computed in a chiral dielectric ε = 2 and μ = 1.

HMMs is their large rates of dissipation originating from
the metal constitutions. In previous works, active composites
were added [35,36] in order to compensate the loss.

In this article, we illustrate the CP-symmetry-based non-
Hermitian photonics and the associated change in photonic
band topology using dielectrics with strong anisotropic chi-
rality. Such a chirality-driven transition from CP-symmetric
to CP-broken phases provides a route to realize hyper-
bolic materials in all-dielectric media, leading to lossless
all-dielectric hyperbolic materials. More interestingly, the
CP-breaking transition is a topological one that occurs at in-
finite energy and requires no band gap closing and reopening;
therefore, it represents a class of non-Hermitian continuous
topological materials with rich physics. The CP-symmetric
non-Hermitian physics enables broad and promising tech-
nological applications due to the unique combination of
non-Hermitian topological phases and lossless hyperbolic
bands. In this work, we showcase two relevant device applica-
tions: all-angle polarization-dependent negative refraction for
optical control and enhanced spontaneous emission for lasing.

II. NON-HERMITIAN PHOTONICS BASED
ON CP SYMMETRY

A. Symmetries of Maxwell’s equations

We consider a continuous photonic medium that can be
described by Maxwell’s equations in the extended eigenvalue-
problem form HPψ = ωHMψ , with

HP = i

(
0 ∇×

−∇× 0

)
, HM =

(
ε iγ

−iγ μ

)
, ψ =

(
E
H

)
.

(1)

TABLE I. Symmetries of Maxwell equations. Some important
symmetries, together with their actions on eigenmodes and breaking
methods, are listed for H (k). Besides CPT , two symmetries, H (k) =
−H (k) and P�, are always preserved.

Symmetry Eigenmodes Breaking mechanism(s)

T ωk → ω∗
−k Gain or loss, gyromagnetic

C ωk → ω∗
k Gain or loss, chiral, gyromagnetic

C� ωk → ω∗
k Gain or loss, gyromagnetic

P ωk → ω−k Chiral
P� ωk → ω−k Cannot be broken

Here the chiral term γ = Tr(γ )I3/3 + N [37] couples E (D)
and B (H), I3 is the 3 × 3 identity matrix, and N is a symmet-
ric traceless matrix. For a homogeneous medium, H (−k) =
−H (k), with H (k) = H−1

M HP(k) [34], dictating that eigen-
modes ωk and −ω−k represent the same physical state.

The time-reversal symmetry operator is defined as T =
σz ⊗ I3K , where the Pauli matrix σi is defined on the (E, H )
basis [38]. Such a definition transforms all the physical
quantities correctly when the chiral effect is absent [39]
and T 2 = 1 as photons obey Bose-Einstein statistics. Note
that time-reversal symmetry breaking is not equivalent to
nonreciprocity, although the spectrum can be complex in a
time-reversal-symmetric system [39]. Preserving T symmetry
requires ε∗ = ε, μ∗ = μ; therefore, the gyromagnetic effect or
material gain or loss breaks time-reversal symmetry. The par-
ity symmetry operator P = −σz ⊗ I3 satisfies PHP(k)P−1 =
HP(−k), det(P ) = −1, and P (E

H) = (−E
H ), as expected. The

Hamiltonian H (k) has an even parity, PH (−k)P−1 = H (k),
when γ = 0, and the parity operator changes the sign of the
chirality γ [37]. Because photons are gauge bosons without
mass and charge, the charge conjugation is defined as C = −K
such that CPT = 1 [40].

In an ideal dielectric, HMM, or metal that has only real
permittivity and permeability vectors, these three symmetries
are persevered individually. While each of them can be broken
explicitly, CPT = 1 is always preserved. Note that the chi-
ral term γ = ωg [41]; thus, the signs of eigenfrequency and
chiral term are not independent. A chiral inversion operator
� : γ → −γ can be defined, which yields an additional sym-
metry (P�)H (k)(P�)−1 = −H (k), dictating that there are
only two independent nonzero modes. Hereafter, we choose
both modes with Re(ω) > 0 (< 0) for a given chiral term γ

(−γ ) [34]. The above symmetries of Maxwell’s equations and
their consequences are summarized in Table I.

Interesting physics arises when a combination of two
symmetries, such as PT or CP , is preserved while each is
individually broken. Here we consider non-Hermitian photon-
ics based on CP symmetry. Consider the two eigenmodes ψ j,k

with eigenfrequencies ω j,k, j = 0, 1, of Maxwell’s equations.
Under CP symmetry, (CP )H (k)(CP )−1 = H (−k), meaning
ω∗

j,−k is also an eigenfrequency. Notice that the constantly pre-
served (P�)H (k)(P�)−1 = H (−k) symmetry yields ω j,k =
ω j,−k. Such a constraint always applies and gives rise to the
twofold degeneracy in Fig. 1(b).

043510-2



TOPOLOGICAL AND HYPERBOLIC DIELECTRIC … PHYSICAL REVIEW A 104, 043510 (2021)

FIG. 2. CP breaking and hyperbolicity. (a) Some examples of EFSs at ω = 1 in CP-symmetric and -broken regions. We define the type-I
and type-II HMMs according to det(HM ) < 0 and det(HM ) > 0, respectively. From left to right, we choose γ = diag(0, 0, 1), γ = diag(0, 0, 2),
γ = diag(0, 2, 2), (γx, γy, γxy, γyx ) = (1, 1, 3, 3), and (γx, γy, γz, γxy, γyx ) = (1, 1, 2, 3, 3). (b) Dielectric real bands in (a1) change to type-I
hyperbolic complex bands in (a2) across CP symmetry breaking in momentum space kz = 1. For all panels, εD = 2, and μD = 1.

In the CP-symmetric regime, the combination of the two
conditions above gives ω j,k = ω∗

j,−k = ω∗
j,k, which imposes

the reality of the eigenfrequency spectrum. In this symmetric
regime, the eigenstates also obey the transformation relation
given by the CP symmetry, i.e., (CP )ψ j,k = eiθ j ψ j,−k. CP-
broken regimes, where CP symmetry relates two states for
a given j at the same, instead of opposite, momenta, also
exist. This leads to the constraints on eigenstates (CP )ψ j,±k =
eiθ j,±kψ j,±k, meaning the eigenfrequencies must be purely
imaginary since ω j,±k = −ω∗

j,±k.

B. CP-symmetric photonics in chiral media

The chiral term γ breaks C and P symmetries individ-
ually but preserves the combined CP symmetry; therefore,
chiral media provide an excellent platform for exploring non-
Hermitian photonics based on CP symmetry. Chirality is
ubiquitous in many different materials, and in photonics chi-
rality gives rise to unique wave propagations [41]. However,
chiral effects are usually weak in natural materials. Recently,
rapid development of chiral metamaterials [42–45] and chiral
plasmonics [46] has opened the door for realizing strong chiral
media in a wide range of frequencies, including microwave,
terahertz [47], infrared, and visible frequencies. Besides en-
hanced circular dichroism and optical activity [42–44,46],
strong chiral media also exhibit negative refraction for certain
incident angles [48–52].

For better illustration of CP-symmetry effects, we consider
an isotropic dielectric ε = εDI3, εD � 0, μ = μDI3, μD > 0
with only a real diagonal chiral term γ = diag(γx, γy, γz ).
Such a chiral term breaks C and P but preserves their com-
bination CP (see Table I). A simple, but instructive, case is
γ = diag(0, 0, γz > 0). The EFS can be determined by

εDμD
(
k2

t + k2
z − εDμDω2

)2 = γ 2
z

(
k2

z − εDμDω2
)2

, (2)

which has four solutions in general,

kz = ±
√

f±(γz )k2
t + ω2εDμD, (3)

where f±(γz ) =
√

εDμD

±γz−√
εDμD

and k2
t = k2

x + k2
y .

For a small γz <
√

εDμD, f±(γz ) are both negative;
therefore, the EFS is bounded and elliptical, which is essen-
tially the same as a dielectric [see Fig. 2(a1)], except that
the degeneracy between different polarizations is lifted. All
eigenfrequencies are real and the same at ±k. The eigen-
modes with nonzero eigenfrequencies satisfy (Ek, Hk) j =
eiθ j (−E∗

−k, H∗
−k) j , demonstrating the CP-symmetric phase

(see Appendix B for an analytical example).
At the exceptional point γ c

z = √
εDμD, f+(γz ) diverges,

and the Hamiltonian H (k) is ill defined because det(HM ) =
0. There are only two solutions for f−(γz ) with kz =
±

√
−k2

t /2 + ω2εDμD. The non-Hermitian Hamiltonian H (k)
is defective at the exceptional point in the sense that the
number of linearly independent eigenmodes is less than the
dimension of the Hamiltonian, which is different from the de-
fectiveness of PT -symmetric Hamiltonians at the exceptional
point that have coalesced eigenstates (i.e., linearly dependent).

Beyond the exceptional point γz > γ c
z , two purely imag-

inary eigenmodes appear, which denotes the CP-broken
regime. Meanwhile, f+(γz ) becomes positive, leading to the
indefinite (hyperbolic) bands [52] [as shown in Fig. 2(a2)],
which are similar to type-I HMMs. In Fig. 2(b), we plot the
complex band structures at a finite kz across the CP-breaking
transition. Before the transition γz < γ c

z , the degenerate bands
(green and red) at γz = 0 split but remain real in the entire
momentum space. The purple plane represents static solutions
of Maxwell’s equations, which are zero for any chiral term.
With increasing γz, the green band’s cone becomes sharper.
Across the exceptional point γ c

z , the real part of the green
band first disappears at infinity and then reemerges as the
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new lower band, which manifests as a cone located at the
origin with a quadratic band touching the new upper red
band, while the remaining parts become purely imaginary (see
Sec. II C for more discussions of the topological nature of this
transition). Such band dispersion exhibits an exceptional ring
on the kx-ky plane [an exceptional cone in three-dimensional
(3D) momentum space], where the eigenmodes coalesce to
zero eigenfrequency and a null eigenvector.

The existence of multiple chiral terms along different di-
rections provides a tunable tool for driving the CP-breaking
transition and engineering different hyperbolic band disper-
sions. In the case γ = diag(γx, γy, γz ), there exist three in-
dividual exceptional points at γ c

l = √
εDμD, l = x, y, z along

each spatial direction. When all γl <
√

εDμD, the system
remains CP symmetric and has ellipsoid EFSs. When one
chiral term such as γz exceeds γ c

z , the system enters the CP-
broken phase and exhibits hyperbolic dispersion, as shown in
Figs. 2(a2) and 2(b). When γy also exceeds the exceptional
point, the hyperbolic dispersion changes from type I to type II
[see Fig. 2(a3)], and the conelike EFSs lie along the kx direc-
tion, which is perpendicular to the kz-ky plane. Interestingly,
when all three chiral components exceeds γ c

l , the system tran-
sitions back to the CP-symmetric phase, and the hyperbolic
dispersions disappear. This feature is unique to CP-symmetric
systems because one always ends up in the PT -broken regime
with increasing material gain-loss strength in PT -symmetric
systems. More exotic hyperbolic band dispersions, which can-
not be realized in metal-dielectric-patterned HMMs, can be
engineered through CP breaking when nondiagonal chiral
terms are involved, as shown in two examples illustrated
in Figs. 2(a4) and 2(a5). More details on the CP-breaking-
induced hyperbolicity are presented in Appendix C. These
results clearly show that strong chiral materials may provide
a tunable platform for realizing lossless hyperbolic materials
and significantly broadening the applications of HMMs.

C. Non-Hermitian topological phase transition

Non-Hermitian effects can bring novel properties to topo-
logical systems. The topological bands are generally complex
in non-Hermitian photonics, leading to various types of gaps
such as point and line gaps [53]. In Hermitian topological
photonics, the band-touching points are typically Dirac points
or Weyl points [54], while more exotic phenomena such as
exceptional points [55] or Weyl exceptional rings [56] can
occur in non-Hermitian topological photonics. Moreover, it
has been shown that purely non-Hermitian effects like gain
and loss can drive nontrivial topological phase transitions
in photonics [57–59]. Finally, due to the relaxation of the
Hermiticity, non-Hermitian systems enjoy broader symmetry
classes, enriching the 10-fold topological classification to a
38-fold classification [60]. Correspondingly, the topological
characterization and topological invariants of non-Hermitian
photonics can be different, many of which are still under
investigation.

While the PT -breaking transition generally does not
accompany the change in topological invariants, the CP-
breaking transition represents a non-Hermitian topological
phase transition in continuous media with interesting proper-
ties. In the following, we illustrate such a unique topological

chiral medium

vacuum

(a1) (b1)

(a2)

(c1) (c2)

Spontaneous 

breaking

(b2)

FIG. 3. Non-Hermitian topological photonics through CP break-
ing. (a1) Topological charge distribution of the photonic TDP at
the origin of momentum space and (a2) the corresponding 2D band
structure at kz = 1 with the open boundary condition along y in the
CP -symmetric phase. (b) Similar to (a), but for the CP-broken
phase. In (b2), two dashed lines give the photonic band gap of 0.58
to 0.69, and the dark gray curve represents the chiral surface wave.
COMSOL MULTIPHYSICS full-wave simulations for edge modes with
(c1) kz = 1 and (c2) kz = −1. The green star denotes the location
of a line source, and the corresponding input energy is ω = 0.59.
The gray-shaded areas represent perfect absorption materials. For
all panels, we assume nonmagnetic material μ = 1 and anisotropic
dielectric permittivity ε = (3, 2, 1). For the CP-symmetric phase, we
take γz = 0.5, while γz = 2 in the broken region.

phase transition using anisotropic nonmagnetic dielectric me-
dia with only nonzero γz.

The topological properties of this continuous system can be
understood as a topological semimetal with, instead of Weyl
points, photonic triply degenerate points (TDPs) [34,61]. The
TDP locates at the origin of momentum space k = 0 (see Ap-
pendix D for more details) due to the lack of high-symmetry
points without lattice symmetries. The topological charge of
the TDP can be described by a non-Hermitian Chern number,

Cab = 1

2π

∮
S2

dk · ∇ × Aab, (4)

on a two-dimensional (2D) sphere S2 containing the TDP.
The Berry connection Aab = −ia〈ψ |∂kψ〉b and a, b = L, R
are used to define left and right eigenvectors H (k)|ψ (k)〉R =
ω(k)|ψ (k)〉R, and H†(k)|ψ (k)〉L = ω∗(k)|ψ (k)〉L. The fact
that the Chern number is gauge independent leads to C = Cab

[62].
In the CP-symmetric region, the charge of TDP is found

to be +2 [34,61], and the distribution of the Berry curvature
ARR on a sphere is plotted in Fig. 3(a1). Figure 3(a2) shows
the real band structure on a cylindrical geometry with open
and periodic boundary conditions along y and x at kz = 1.
Such a band structure can be understood from Fig. 2(b),
where the anisotropy splits the quadratic band touching at
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(kx, ky) = (0, 0) into two Dirac points at finite kx. A finite γz

breaks the Dirac point, so that the TDP is isolated in the entire
momentum space. Once we take an open boundary along y,
the bands are projected onto kx, leading to Fig. 3(a2). In this
phase, there is no full gap for any frequency, and the projected
band looks similar along ky or kz.

In the CP-broken region, the TDP remains, but its topo-
logical charge becomes −2 [see Fig. 3(b1)], indicating a
topological phase transition associated with the CP breaking.
In the projected bands shown in Fig. 3(b2), there is a full
photonic gap, labeled by the dashed lines. To investigate the
band topology in two dimensions, we compute the Chern
number of each band following the definition in Eq. (4) with
S2 replaced by R2, which is the 2D infinite plane at any finite
kz (see Appendix D for more details). The band Chern number
is found to be nontrivial, as labeled in Figs. 3(a2) and 3(b2).
The anisotropic dielectric permittivity plays an important role
here as it breaks the degeneracy at kx = 0 and ky = 0 [see
Fig. 2(b)].

To explore the bulk-edge correspondence, we solve the sur-
face state as a Dyakonov wave, which is plotted in Fig. 3(b2)
as a dark gray curve. We find that the edge modes are all
real, which indicates that the edge modes respect CP sym-
metry even though the symmetry is spontaneously broken
in the bulk. The existence of the chiral edge state is further
confirmed by the COMSOL MULTIPHYSICS simulation shown
in Fig. 3(c1). The simulation also indicates that the edge
modes have only real energy since there are no attenuations or
amplifications when they propagate along the edges until they
hit the absorption materials on the sides (gray-shaded area).

The above discussion focuses on kz > 0. For kz < 0, the
upper-band Chern number in Fig. 3(b2) changes to +1, and
the total change of −2 when kz crosses zero represents the
topological charge of the TDP at k = 0. The reverse of the
chiral edge mode at kz < 0 is confirmed by the full-wave
simulation shown in Fig. 3(c2), which is a result of breaking
P symmetry.

Generally, topological phase transitions in lattices are
accompanied by band gap closing and reopening. In our
continuous media, the band Chern number seems to be
“exchanged,” and the topological charge of the TDP cor-
respondingly reverses after the topological phase transition
[see Figs. 3(a) and 3(b)]. However, there is no band
gap closing when γz is tuned across γ c

z , as shown in
Fig. 4.

When γz → γ c−
z , the green band becomes infinite every-

where, except at (kx, ky) = (0, 0) in a 2D plane defined by
any finite kz, which is shown as a sharp cone in Fig. 4(a).
At the critical point, Eq. (1) is ill defined as HM is irre-
versible, leading to such divergent eigenfrequencies. When
γz → γ c+

z , the green band also merges as a sharp cone, but
from the zero-real-energy plane [Fig. 4(b)], with the imag-
inary band approaching infinity. Across the transition, the
red band remains real, finite, and continuous. While Eq. (1)
cannot be solved directly at γz = γ c

z , the eigenfrequencies at
(kx, ky) = (0, 0) can be defined by solving both the left and
right limits, which are equivalent to each other. Therefore,
the gap between the green and red bands can be defined in
the entire 2D plane, which remains finite and open throughout
the topological phase transition.

FIG. 4. Band exchange at infinity. (a) Band structure near the
origin on the kz = 1 plane in the CP-symmetric region when γz →
γ c−

z . (b) Similar to (a), but plotted in the CP-broken region with
γz → γ c+

z . (c) Evolution of two bands with respect to γz across the
critical point near the origin of the kz = 1 plane. Note that only
nonzero imaginary (dashed curves) and real (solid curves) parts are
plotted for better visualization.

In Fig. 4(c), we plot the bands at kx, ky � 1 with respect
to varying γz near the vicinity of γ c

z . Clearly, the green band
connects to infinite real energy and zero imaginary energy at
the critical point and then comes back from infinite imaginary
energy and zero real energy. That is, the green band travels
from higher energy to lower energy by making itself purely
imaginary, which reverses the band topology without cross-
ing the real red band. Such a non-Hermitian avoided band
crossing is unique to non-Hermitian systems and implies more
fundamental and distinctive topological properties of open
systems.

III. APPLICATIONS OF NON-HERMITIAN PHOTONICS
BASED ON CP SYMMETRY

Besides the distinct non-Hermitian topological phase tran-
sition without gap closing, the non-Hermitian photonics based
on CP symmetry may have potential applications in a plethora
of fields due to the rise of hyperbolicity. For example, hy-
perbolic bands can be utilized to fabricate superresolution
lenses [29,63], superresolution photolithography [64], high-
sensitivity sensors [30], and ultrafast lasers or light-emitting
diodes [65]. In the following, we illustrate their two impor-
tant device applications in classical optical devices and laser
engineering.
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chiral dielectric

vacuum

vacuum

̂

Spontaneous breaking

(b)

(c)

(a)

-symmetric

-broken

FIG. 5. All-angle and polarization-dependent negative refrac-
tion. (a) Analytic calculations of a linearly polarized plane wave
transmitting on the boundary between a chiral dielectric and a vac-
uum. The plot shows transmitted angle θt with respect to different
incident angles θi. The blue and yellow curves represent right-handed
and left-handed polarizations. (b) and (c) COMSOL MULTIPHYSICS

simulations for (a). The incident angle is fixed at θi = 40◦, while
γ = 2I3 and γ = diag(0, 2, 0) for (b) and (c), respectively. The white
arrows denote the incident directions.

A. All-angle polarization-dependent beam splitter

For practical device applications, it is desirable to be able
to control the constituent materials’ optical properties. This
can be achieved by material engineering, thermal tuning, and
nonequilibrium modulation, to name a few methods [66–70].

Birefringence and negative refraction have long been stud-
ied in chiral media, and it is known that there is a critical angle
θc, beyond which one polarization is totally reflected [50].
The critical angle vanishes in CP-broken regimes because
the negative refraction has been promoted to an all-angle
effect thanks to indefinite bands. This is demonstrated by
the analytic results [Fig. 5(a)], together with the COMSOL

MULTIPHYSICS simulation [Figs. 5(b) and 5(c)]. Because of
the polarization dependence of the chiral media shown in
Fig. 5(a), the CP-symmetric photonics promises an all-angle
polarization-dependent beam splitter, a device that is hard to
engineer in either HMM or CP-symmetric dielectrics.

The details of analytic and numeric calculations are dis-
cussed in Appendix E.

B. Enhanced spontaneous emissions for laser engineering

Spontaneous emissions play a crucial role for laser engi-
neering and have been widely studied in chiral media, but
mainly in the CP-symmetric regime. The hyperbolic bands
in the CP-broken regime can significantly enhance the spon-
taneous emissions of a dielectric continuum with both broader
bandwidth and a stronger Purcell effect [23].

Through Fermi’s golden rule, we can easily see that the
radiative decay rate is generally proportional to the photonic
density of states ρ(ω) = ∑

σ,k δ(ωσ,k − ω), where the sum-
mation goes over all polarizations σ and momenta k. The
density of states is proportional to the area of EFSs at ωσ,k =
ω, which is a small finite value for dielectrics but diverges for

FIG. 6. Spontaneous emissions enhanced by CP breaking.
(a) Isotropic Purcell factor for a bulk SiO2 crystal with chiral effects
γ = (0, 0, 1) (CP symmetric) and γ = (0, 0, 2) (CP broken). The
inset shows the setup, where the cuboid represents the dielectric, and
the red sphere is a dipolar source. (b) Phase diagram of the Purcell
factor in logarithmic scale. The setup is the same as in the inset in
(a).

HMMs. Note that it does not diverge in real physical systems
due to finite-size effects and corrections of effective-medium
theory for large k states [20]. Based on the above arguments,
a hyperbolic dispersion would render a larger radiative decay
rate and thus a stronger Purcell effect. The Purcell effect
characterizes the enhancement or inhibition of spontaneous
emission in a system with respect to free space. For most
nanophotonic applications, a stronger Purcell effect (i.e., a
larger Purcell factor) is desired.

With the physical understanding, we expect to observe a
jump in the Purcell factor in the chiral medium at a given
wavelength upon crossing the exceptional point and entering
the CP-broken region. This is further confirmed by the COM-
SOL MULTIPHYSICS simulations shown in Fig. 6. We consider
a SiO2 crystal sample with size 100 × 100 × 200 nm3.
An electric dipole source in vacuum is placed 10 nm above
the sample in the x-y plane [see the inset in Fig. 6(a)], and
the plotted Purcell factor is averaged through three dipolar
configurations along three spatial directions [24].

For simplicity, we consider only a wavelength-independent
chiral term along the z direction, which renders, in the CP-
broken region, indefinite bands similar to Fig. 2(a2). Two
examples with γz = 1 and γz = 2 are plotted in Fig. 6(a), cor-
responding to the symmetric and broken phases, respectively.
The latter shows a very strong Purcell effect with a sharp peak
around 320 nm, and the broadband enhancement is observed
on the right-hand side (long wavelength). We further scan the
phase diagram of the Purcell factor and plot it in Fig. 6(b). The
sharp boundary around γz ≈ 1.55 manifests the CP-breaking
critical point, at which a large leap of the Purcell factor is
observed. Note that the boundary is not exact at different
wavelengths as the actual reflective index of SiO2 varies. Our
simulation also indicates that the Purcell factor could reach the
order of e6 ≈ 400 in proper regions. Therefore, such a chiral
dielectric material provides an ideal platform for engineering
topological lasers with edge-mode lasing and enhanced spon-
taneous emission.

IV. CONCLUSION AND DISCUSSION

In the current literature, chirality can be obtained ei-
ther from chiral molecules [37] or from certain spatially
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spiral nanostructures, i.e., chiral metamaterials [42]. There-
fore, the proposed chiral dielectric materials can be realized
by creating chiral metamaterials with nanofabrication consid-
erations in mind and can be characterized by measuring the
circular dichroism spectra [71]. Alternatively, dielectric chiral
molecules can be utilized, with the material hyperbolicity
directly characterized by the Muller matrix ellipsometry [72].
If chiral dielectrics with optical gain are used, the topological
edge modes can be promoted to lasing edge modes and can be
measured using standard microphotoluminescence techniques
[73].

Since the dielectric material with chirality shows hyper-
bolic dispersion, it exhibits a higher optical density of states
than its surrounding material. Thus, insertion loss is unavoid-
able when the high-momentum components outcouple from
the chiral dielectric material to its surroundings. Two suitable
approaches that have been reported to minimize the insertion
loss are dispersion engineering [74] and the addition of a
grating coupler [75]. For our proposed chiral dielectric ma-
terial, adding a subwavelength grating is an option as it can be
fabricated on the material via focused ion-beam milling [75].

In terms of the operation bandwidth of the proposed chiral
dielectric, we can design the chiral metamaterials on a scale
similar to the wavelength to target different frequency ranges
from optical to microwave frequencies [76].

In conclusion, we proposed a class of non-Hermitian
topological photonics based on CP symmetry which is
dramatically different from the well-known PT -symmetric
photonics. The physical realization of such CP-symmetric
photonics in chiral dielectrics opens a pathway for engineer-
ing exotic lossless hyperbolic materials with significant ap-
plications. Importantly, we revealed a class of non-Hermitian
topological phase transition in continuous media without band
gap closing. Our work may shed light on future experimental
and theoretical development of new non-Hermitian photonics.

Many important questions remain to be answered for the
CP-symmetric non-Hermitian photonics, and here we list a
few of them: (i) Can CP symmetry and its breaking be induced
by means other than chiral effects? (2) Can CP-symmetric
photonics be applied to periodic optical systems like photonic
crystals or coupled optical cavities? (iii) Are there other paths
to non-Hermitian photonics besides PT and CP symmetries?
(iv) Finally, does such CP-symmetric non-Hermitian physics
exist in physical systems other than photonics?
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APPENDIX A: DIAGNOSIS OF A SIMPLE PT MODEL

A simple model for PT photonics is

HPT = tσx + iγgσz, t ∈ R, γg ∈ R, (A1)

which describes a one-dimensional coupled microcavity array
with patterned gain and loss γg. The hopping coefficient t is
assumed to be real, and the spectrum with t = 1 is plotted in
Fig. 1(a).

For such a system, we could define the symmetry opera-
tors P = σx and T = K . The eigenmodes, in both symmetric
and broken phases, are related in a way similar to what we
discussed in Sec. II A . Specifically, in the symmetric phase,
we have ψ j = eiθ j (PT )ψ j , followed by the real spectrum
ω j = ω∗

j , where the eigenmodes are defined as HPT ψ j =
ω jψ j, j = 0, 1. In the broken regime, the two eigenmodes are
related as ψ j = eiθ j (PT )ψ j̄ , so that the spectrum is a complex
conjugate pair ω j = ω∗̄

j and j̄ = 1 − j.

APPENDIX B: EXAMPLE OF CP BREAKING

In the main text, we argued that the spontaneous breaking
of CP symmetry may lead to complex eigenmodes, which can
be understood through the transformation of eigenmodes at
±k. If (CP )ψ j,k = eiθ j ψ j,−k, there is a constraint on eigenfre-
quencies ω j,k = ω∗

j,−k, which dictates a real spectrum. Here
we show an example in both CP-symmetric and CP-broken
regions by writing down the eigenmodes explicitly. We take
εD = 4, μD = 1, γ = diag(0, 0, γz ), and k = (kx, ky, kz ) =
(1, 1, 1). The exceptional point is then γ c

z = 2.
There are two nonzero and positive (in the CP-symmetric

regime) solutions, ω0,±k = (6 − γz )/(2γz,−) and ω1,±k =
(6 + γz )/(2γz,+), with eigenstates (we can take only either the
positive or negative branches for a given system)

ψ0,±k =
(

i(2 − γz ) ± γz,−
8

,
i(2 − γz ) ∓ γz,−

8
,− i

2
,
γz − 2 ± iγz,−

4
,
γz − 2 ∓ iγz,−

4
, 1

)T

, (B1)

ψ1,±k =
(

− i(γz + 2) ± γz,+
8

,− i(γz + 2) ∓ γz,+
8

,
i

2
,−γz + 2 ∓ iγz,+

4
,−γz + 2 ± iγz,+

4
, 1

)T

, (B2)

where γz,± = √
(γz ± 6)(γz ± 2).

When 0 < γz < γ c
z , γz,± > 0. It is obvious that

(CP )ψ j,k = eiπψ j,−k, such that ω j,k = ω∗
j,k, which is

in the CP-symmetric phase. When γz > γ c
z , γz,+ > 0,

but γz,− becomes purely imaginary. The condition

(CP )ψ1,k = eiπψ1,−k survives, so there is still one real
eigenmode. The transformation for the other one becomes
(CP )ψ1,±k = eiπψ1,±k, which requires ω1,±k = −ω∗

1,±k. The
CP symmetry is partially broken by strong chiral effects, and
the eigenspectra become complex.
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FIG. 7. Hyperbolic dispersions in HMMs and CP-broken di-
electrics. Typical EFSs at ω = 1 for (a) type-I and (b) type-II
HMMs. We choose ε = diag(2, 2, −2) and ε = diag(−2, −2, 2),
respectively. Corresponding realizations of dispersion relations in
strong chiral dielectrics for (c) ε = 2I3, γ = diag(0, 0, 3), (d) ε =
diag(1, 1, 2), γ = diag(1.5, 1.5, 0), and (e) ε = diag(2, 2, 2), γ =
diag(2,

√
2, 0). For all panels μ = I3.

APPENDIX C: HYPERBOLIC BANDS FROM CP
BREAKING BY CHIRAL EFFECTS

The EFSs for pure dielectric materials are spheres (el-
lipsoids) in the momentum space. However, the EFSs for
HMMs are completely different, as shown in Figs. 7(a) and
7(b), corresponding to type-I and type-II HMMs, respectively
[19,20]. A significant feature of these EFSs is that they stretch
to infinity in momentum space, so that the material can sup-
port the propagation of large |k| waves. Such hyperbolicity
was thought to be unique to HMMs [20]. Quite surprisingly,
similar dispersions can also be realized through CP breaking
induced by chiral terms. The corresponding EFSs are plotted
in Figs. 7(c) and 7(d).

As observed in Fig. 7(c), the chiral term along one spatial
direction exceeding the exceptional point can render a disper-
sion relation mimicking that of a type-I HMM. If the chiral
terms along two spatial directions exceed the exceptional
points, the dispersion relation is similar to that for a type-II
HMM, as shown in Fig. 7(d). Nevertheless, the geometries
are not exactly the same in the small-|k| region because we
have two bounded EFSs surrounded by the hyperbolic one.
While we presented similar results and some exotic hyper-
bolic dispersions in the main text, Fig. 7(e) offers an example
where the system is CP broken in one direction and at the
exceptional point in another direction.

In the following, we study the wave propagation in chi-
ral media and show how the hyperbolic dispersions emerge.
We first consider a chiral isotropic dielectric medium with
constant scalar permittivity, permeability, and chiral effect
γ = γDI3, as defined in the main text. This simple model is
enough to gain insights into the systems and has been adopted
frequently in previous studies [41,48–50]. The resulting dis-
persion relation is

ω = |k|/|√εDμD ± γD|. (C1)

For γD = 0, the EFS is a twofold-degenerate sphere, as
expected, and the degeneracy comes from two different

polarizations. For a finite chiral strength, the degeneracy is
lifted, and there are always two spheres with different radii
in the momentum space except at γD = ±√

εDμD. It has
been shown that for |γD| >

√
εDμD, there is negative refrac-

tion for proper incident angles because the time-averaged
Poynting vector 〈S〉t is antiparallel to k [50]. This result is
straightforward if we notice that the refraction indexes are
n = √

εDμD ± γD for right- and left-handed circular polariza-
tions [43]. Nevertheless, the EFSs always remain ellipsoids
for both γD <

√
εDμD and γD >

√
εDμD as a result of linear

dispersion relations. Due to the bounded EFSs, there exists a
critical angle θc in a scalar chiral medium, beyond which the
incident waves with certain polarizations are totally reflected.
A scalar chiral term cannot render spontaneous CP breaking,
which requires strong anisotropic chiral terms.

We now revisit the simple, but instructive, case in the main
text with slightly different ε = diag(εt > 0, εt > 0, εz > 0),
μ = 1, and γ = diag(0, 0, γz ). The dispersion relation be-
comes(

k2
t + k2

z − εtω
2
)(

εt k
2
t + εzk

2
z − εzεtω

2
) = γ 2

z

(
k2

z − εtω
2
)2

,

(C2)
where k2

t = k2
x + k2

y . Our previous analysis suggests that there
is an exceptional point γz = ±√

εz since γz is decoupled from
kx and ky in Eq. (C2). For a small γz, we have two distin-
guishable ellipsoids since the degeneracies between different
polarizations are lifted. As the chiral strength increases, the
inner EFS gets compressed along both the kx and ky directions
and disappears at the exceptional point. After passing the
exceptional point, the EFSs are not two ellipsoids anymore
because the leading term (εz − γ 2

z )ε2
t ω4 becomes negative,

which mimics a type-I HMM. As a result, we observe type-I
hyperbolic dispersions in the CP-broken phase since hyper-
bolic bands must be non-Hermitian due to its metal character.
Note that the two degenerate points at k = (0, 0,±kz ) survive
but can be lifted by anisotropy in the permeability tensor
εx = εy or additional chiral terms.

Although the chirality-induced hyperbolic dispersion has
an EFS similar to that for HMMs, it is impossible to obtain
a homogeneous model for a strong chiral medium similar
to that for a simple HMM. In a chiral medium, eigenmodes
with different polarizations are not degenerate. The existence
of chiral effects also breaks all spatial inversion symmetries,
while a pure HMM preserves them. However, by comparing
the wave equations in the frequency-momentum domain, we
can recast the chiral medium with only nonzero γz into a “pure
HMM” form,

εeff = [
εt , εt , εz − γ 2

z

(
k2

z − εtω
2
)
/
(
k2

t + k2
z − εtω

2
)]

, (C3)

where the effective εeff along the z direction depends on kz

and ω. Such a projection cannot be applied to materials with
nonvanishing chiral effects along two directions because there
are coupled terms like γiγ j, i = j, which lead to the difference
in the geometries of EFSs [see Figs. 7(b) and 7(d)].

Although exceptional points along three spatial directions
are decoupled when γ and ε (or μ) commute, the situation can
be much more complicated if there are nondiagonal terms in
the chiral tensor. When there are only diagonal chiral terms,
the exceptional points form two intersecting exceptional lines
that separate the phase diagram into four parts [Fig. 8(a)].

043510-8



TOPOLOGICAL AND HYPERBOLIC DIELECTRIC … PHYSICAL REVIEW A 104, 043510 (2021)

FIG. 8. Phase diagram with different chiral effects. (a) Den-
sity plot of det |HM |. The solid black curves denote zero solutions
(exceptional points). γ = diag(0, a1, a2). The triangle, square, and
pentagon represent the parameters for Figs. 2(a1), 2(a2), and 2(a3),
respectively. (b) Similar to (a), but the chiral term is chosen to

be γ =
(a1 a2 0

a2 a1 0
0 0 0

)
. The hexagon corresponds to Fig. 2(a4).

(c) and (d) Phase boundary for chiral terms γ =
(a1 a2 0

a2 a1 0
0 0 a3

)
and

γ =
(a1 a2 a3

a2 a1 0
a3 0 a1

)
. The brown ball gives the parameters used in

Fig. 2(a5).

The phase boundary changes when a nondiagonal term is
considered [Fig. 8(b)], which is accompanied by some exotic
hyperbolic dispersions. In 3D parameter spaces, exceptional
surfaces exist [Figs. 8(c) and 8(d)]. We see the complex chiral
configurations lead to hyperbolic dispersions that cannot be
realized in regular HMMs.

APPENDIX D: PHOTONIC TRIPLY DEGENERATE POINT

In the main text, we discussed the TDP at the origin of
momentum space without inspecting the band structure. Here
we characterize the band dispersion of both real and complex
TDPs in the CP-symmetric and -broken phases.

The real TDP in the CP-symmetric phase is depicted in
Figs. 9(a) and 9(b), projected to the kx = 0 and kz = 0 planes,
respectively. Both the green and red bands show linear dis-
persion along all spatial directions, and the bands are gapped
everywhere except for the TDP at the origin.

In the CP-broken region, the TDP mimics that studied
in a genuine HMM with small chirality terms [34]. The red
band is real in the entire momentum space and shows linear
dispersions as in the symmetric phase [see Figs. 9(c1) and
9(d1)]. On the contrary, the green band becomes complex in
the broken phases. It is either purely real or purely imaginary
in the kx = 0 plane [see Fig. 9(c2)], and it is a purely imagi-
nary cone in the kz = 0 plane. The band structure in the ky = 0
plane is similar to Figs. 9(c1) and 9(c2) since the CP breaking
happens only in the z direction. The bands remain gapped

(a) (b)

(c1) (c2)

(d1) (d2)

FIG. 9. Real and complex photonic triply degenerate points. Real
TDPs in the (a) kx = 0 and (b) kz = 0 planes. The charge distribution
is plotted in Fig. 3(a1). (c) and (d) Complex TDPs corresponding to
Fig. 3(a2). (c) shows the (c1) real and (c2) imaginary bands in kx = 0,
while (d) depicts the band structure in kz = 0.

everywhere in the momentum space, except at the origin, so
that the photonic TDP is well defined.

In the calculation of the 2D band Chern number for a fixed
kz plane, we notice that such a band Chern number defined on
an open manifold may not be quantized. However, it has been
shown that for continuous media, the base manifold R2 can be
compactified into a sphere S2, so that the photonic band Chern
number is still strictly quantized and gauge invariant [34].

APPENDIX E: ALL-ANGLE POLARIZATION-DEPENDENT
BEAM SPLITTER

To compute Fig. 5(a), we choose the x-y plane to be the
plane of incidence and the y axis to be the norm, and the
incident beam comes from the right side of the norm. The
chiral medium locates at y < 0, and the region y � 0 is a
vacuum. The incident and refraction angles are θi and θt ,
respectively. The simulations in Figs. 5(b) and 5(c) are per-
formed in COMSOL MULTIPHYSICS.

As we discussed before, a scalar chiral term could render
negative refraction, but only for a small range of the inci-
dent angle. This effect is illustrated in Fig. 5(a) by the solid
curves. The negatively refracted beam disappears when the
incident angle exceeds a critical value, θc ∼ 36◦, which can
be attributed to bounded EFSs. As a comparison, we also plot
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the θi-θt relation for a pure dielectric, shown by the dashed
curve. There is only one single curve due to the lack of the
birefringence effect.

Thanks to the hyperbolic dispersion, all-angle negative re-
fraction, which is polarization independent, can be realized in
HMMs [21]. In the CP-broken region, the hyperbolic disper-
sion allows the realization of all-angle polarization-sensitive
birefringence and negative refraction. We consider a dielectric

with chiral vector γ = diag(0, 2, 0), which is in the CP-
broken phase with a type-I hyperbolic dispersion. In Fig. 5(a),
we see that the negative refraction indeed happens for arbi-
trary incident angles. We further confirm these results through
COMSOL MULTIPHYSICS simulations, the results of which are
plotted in Figs. 5(b) and 5(c). There is no negative refraction
when θi > θc in the CP-symmetric phase. This effect can be
used to engineer an all-angle polarization beam splitter.
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