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Stueckelberg interferometry using periodically driven spin-orbit-coupled Bose-Einstein condensates
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We study the single-particle dispersion of a spin-orbit-coupled (SOC) Bose-Einstein condensate (BEC) under
the periodical modulation of the Raman coupling. This modulation introduces a further coupling of the SOC
dressed eigenlevels, thus creating a second generation of modulation-dressed eigenlevels. Theoretical calculations
show that these modulation-dressed eigenlevels feature a pair of avoided crossings and a richer spin-momentum
locking, which we observe using BEC transport measurements. Furthermore, we use the pair of avoided crossings
to engineer a tunable Stueckelberg interferometer that gives interference fringes in the spin polarization of BECs.
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I. INTRODUCTION

In ultracold atoms, laser-induced synthetic gauge fields [1]
have realized a rich variety of physics, such as synthetic electric
[2] and magnetic [3] fields, spin-orbit coupling (also referred to
as SOC) [4], the superfluid Hall effect [5], the spin Hall effect
[6], and the Hofstadter-Harper and Haldane Hamiltonians
[7–9]. Many of these works use Raman coupling between
spin states of ultracold atoms to modify the single-particle
dispersion relation [10–12]. This has resulted in a rich field
of studies in one-dimensional (1D) equally weighted Rashba
and Dressehauls SOC for both Bose-Einstein condensates
and degenerate Fermi gases [13–21]. Such coupling has been
combined with an optical lattice [22] and led to a softening of
the roton and phonon modes [23]. Furthermore, very recently,
this synthetic SOC has been extended to 2D [24,25], opening
the door for the quantum simulation of various topological
physics.

In our previous work, we used BEC transport to study
Landau-Zener (LZ) like transitions between the SOC dressed
eigenlevels at the avoided crossings induced by a Raman
coupling of constant strength [26]. Here we show that a
modulation of the Raman coupling creates new SOC dressed
band structures, which we characterize by measurements
of BEC transport and Landau-Zener transitions. Modulation
of the Raman coupling was previously used to create a
tunable SOC at high driving frequency [27]. When the driving
frequency is instead comparable with the energy between the
two dressed bands, the two bands couple together, inducing a
richer spin-momentum locking and a pair of avoided crossings.
In this work, we have experimentally observed both the richer
spin-momentum locking and used the pair of avoided crossings
to engineer a Stueckelberg [28] interferometer.

The remainder of this paper is structured as follows. In
Sec. II, we present our experimental setup and methods. In
Sec. III we discuss our experimental results showing the
difference in the spin momentum locking of the dressed
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ground band (created with a static Raman coupling) and
the “modulation-dressed” band (created with a periodically
modulated Raman coupling). In Sec. IV we show how we
engineered a spin-resolved Stueckelberg atom interferometer
using the pair of avoided crossings between the modulation-
dressed bands. Finally, in Sec. V we offer our concluding
remarks and future prospects.

II. EXPERIMENTAL SETUP AND METHODS

Our experimental setup used to create a 1D Raman-induced
SOC is shown in Fig. 1. Many details of our apparatus are
contained in Refs. [26,29]. The Raman beams (whose beam
waist is large compared to the in situ size of the BEC)
counterpropagate along the same axis as gravity (ŷ). By
reducing the intensity of the dipole trapping laser, the BEC
can be accelerated by gravity along the −ŷ direction. In all the
following experiments, we use this technique to induce BEC
transport through both the dressed and modulation-dressed
band structures induced by the Raman beams.

Our experiment starts with a 1D SOC BEC of 87Rb atoms
subjected to a constant Raman coupling of two spin states
(| ↑〉 = |F = 1,mF = −1〉 and | ↓〉 = |F = 1,mF = 0〉), as
shown in Figs. 1(a) and 1(b). This coupling creates two
eigenlevels, both of which possess a spin-momentum locking
in the quasimomentum (h̄q) space (the total spin polarization
of the eigenstate depends on q). We denote the upper and lower
eigenlevels as EU (q) and EL(q). This unmodulated eigenlevel
structure, an example of which is pictured in Fig. 2(a), is
calculated from the SOC Hamiltonian

HSOC =
(

h̄2

2m
(q + kr )2 − δ/2 �0/2

�0/2 h̄2

2m
(q − kr )2 + δ/2

)
,

(1)

where δ is the Raman laser detuning from the energy difference
between spin states due to the Zeeman effect (δ is zero in all
these experiments), m is the 87Rb atomic mass, h̄kr = h/λR
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FIG. 1. Experimental schematic. (a) Laser geometry showing
both Raman beams. �BBias denotes the bias magnetic field (of ≈ 5G)
which lifts the degeneracy of the mF spin states. The acceleration
due to gravity is along the −ŷ direction. (b) Energy-level diagram
showing the two bare spin states, |F,mF 〉 = |1, − 1〉 and |1,0〉
(also denoted up and down, respectively), and their Raman-induced
coupling. Drawing is not to scale. (c) Representative timing diagram
for the dipole trapping laser (dashed-dot line) and the Raman coupling
(solid line).

is the recoil momentum of the Raman laser with wavelength
λR = 790 nm, h̄ = h/2π is the reduced Planck’s constant, and
�0 is the unmodulated Raman coupling. For the remaining
experiments, we define the total spin polarization of the BEC
as S = (N↓ − N↑)/(N↓ + N↑), where N↑(↓) is the number of
spin up (down) atoms in the BEC. The recoil energy from
the Raman lasers is Er = h̄2k2

r /2m = h × 3.68 kHz. HSOC

only includes the mF = −1 and 0 states since the mF = +1
spin state is far detuned in the range of q accessed in these
experiments because of the quadratic Zeeman shift and the
recoil energy associated with the two-photon Raman transfer.

To engineer a new dispersion relation for our ultracold
atoms, we added a time-dependent modulation to the inten-
sity of the Raman coupling: �R(t) = �0 + �M cos(2πfmodt),
where fmod is the modulation frequency and �M is the
modulation amplitude; see the timing diagram in Fig. 1(c).
Two results demonstrated the creation of the new modulation-
dressed eigenlevels: (i) we observed the more complex rotation
of the spin polarization of BECs during transport through
the modulation-dressed band (results shown in Fig. 2), and
(ii) we used the pair of avoided crossings available in the
modulation-dressed band to engineer an atom interferometer
(results shown in Figs. 3, 4, and 5).

According to Floquet theorem (see Ref. [30] for a recent
discussion), periodically driven quantum systems can be
described by Floquet states and a quasienergy spectrum. The
latter can be obtained by diagonalizing the following block
tridiagonal matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

HSOC + hfmod12 V+1

V−1 HSOC V+1

V−1 HSOC − hfmod12

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where HSOC is the unmodulated SOC Hamitonian defined in
Eq. (1) and V±1 = T −1

∫ T

0 HSOC(t)e±i2πfmodt dt = (�M/4)σx

with T = 1/fmod denoting the period of the external driving,
σx is the Pauli matrix, 12 is the 2 × 2 identity matrix, and
HSOC(t) is the same as HSOC but replacing �0 with �R(t).
The eigenenergy spectrum of H exhibits a periodic pattern
of the form E±(q) + n2πfmod, where n = ±1, ± 2, . . .. We
call E±(q) the upper and lower modulation-dressed bands.
The time-averaged dynamics of the driven system can be well
described by such modulation-dressed bands. Furthermore,
when hfmod is slightly larger than EU (q ≈ 0) − EL(q ≈ 0),
E+(q) and E−(q) also feature a double avoided crossing with
a gap size �C [see Fig. 2(b)]. The relationship between �C

and �M can be calculated numerically and will be discussed
later in Fig. 5(c).

However, we also found that a simpler, perhaps more in-
tuitive, 2 × 2 Hamiltonian Hmod sufficiently explains our data
in the parameter regimes studied [31]. The two modulation-
dressed bands E±(q) can be approximately modeled by

coupling the lower dressed band EL(q) and the downshifted
higher dressed band, EU (q) − hfmod, with a simple effective
coupling constant �C , i.e.,

Hmod =
(

EL(q) �C/2

�C/2 EU (q) − hfmod

)
. (3)

Diagonalizing Hmod at each q, we obtain the new modulation-
dressed eigenlevels [an example of which is shown in
Fig. 2(b)]. These modulation-dressed eigenlevels of Eq. (3)
are nearly identical with E±(q) in the parameter regime of
our experiments and we used them in our following analysis
[32]. The modulation-dressed bands E+(q) and E−(q) feature
a more complex rotation of the spin polarization of the BEC as
the quasimomentum goes from +h̄kr to −h̄kr . This contrasts
with the monotonic single rotation of the spin polarization
present in EU (q) and EL(q); see Figs. 2(a) and 2(b).
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FIG. 2. Experimental demonstration of the modified energy-momentum dispersion relation in the presence of modulated Raman coupling.
(a) The unmodulated 1D SOC eigenlevels [EU (q) and EL(q)] calculated from Eq. (1) with �0 = 1.3Er and δ = 0Er . The dashed line
shows the location of EU (q) if it had been shifted down by fmod = 10.56 kHz. (b) The E+(q) and E−(q) modulation-dressed eigenlevels
calculated from Eq. (3) with identical �0 and δ as (a) and with �C = 0.58Er and fmod = 10.56 kHz. The shifted but unmodulated
dressed eigenlevels are shown by dashed lines. In (a) and (b) the blue and red colors superimposed on the eigenlevels and images
represent spin down (bare spin mF = 0) and up (bare spin mF = −1), respectively. Note the richer spin-momentum locking of the
modulation-dressed SOC eigenlevels and the two avoided crossings labeled A and B. The green bars indicate the avoided crossings with
gap size �C used as beam splitters in the interference experiments discussed later. (c),(d) Experimental comparison between the spin
polarization of BECs transported through an unmodulated band EL(q) and a modulated band E−(q). Both bands used �0 = 1.3Er and
δ = 0Er . The modulated band had �M = 1.3Er and fmod = 10.56 kHz. The BECs started at qi ≈ +1kr , fell under gravity with acceleration
αF ≈ 1680kr/s along the −ŷ direction for 1.5 ms, and reached qf ≈ −1.5kr . (c) Four representative time-of-flight images taken at q/kr

of 1.0, 0.8, 0.5, and −0.3 for both EL(q) and E−(q) showing their different spin-momentum lockings. In this panel, k = q + kr for
mF = −1 and k = q − kr for mF = 0. (d) Comparison between the observed and calculated spin polarizations for BECs in both EL(q)
and E−(q). In the unmodulated case, the BEC nearly adiabatically follows the lowest-energy eigenlevel and the expected monotonic spin
rotation is observed (black crosses). However, in the modulated case, an additional oscillation of the spin polarization is observed (purple
circles). Solid black (purple dashed) lines are the calculated spin polarization of EL(q) [E−(q)] given the experimental parameters using
Eq. (1)[(3)], and �C = 0.58Er . For this and following figures, a representative error bar indicates an average of 10% uncertainty in atom
population in each spin due to technical noise.

III. SPIN MOMENTUM LOCKING OF THE
UNMODULATED AND MODULATED BANDS

To study the spin composition of the modulation-dressed
band E−(q), we use the BEC transport method developed in
our earlier work [26]. Briefly, a BEC is initially prepared in a
bare mF = 0 state, and subsequently it is adiabatically loaded
at qi ≈ 1kr of a dressed band with a fixed value of �0. The
modulation of the Raman beams is then turned on at the same
time (defined as t = 0) as the optical trap holding the BEC
is lowered or turned off, which allows gravity to accelerate
the BEC in the −ŷ direction at a tunable average rate αF

through both the avoided crossings of E−(q) [labeled A and B
in Fig. 2(b)]. The probability of a diabatic transition between

the modulation-dressed eigenlevels is given by the Landau-
Zener formula, PLZ = exp [−2π (�C/2)2/(h̄αβ)], where α =
|dq/dt | is the rate of acceleration at the avoided crossing and
β is the difference between the slopes of the unmodulated
SOC energy levels. Although PLZ is an approximate formula
to describe the probability of the transition between the energy
bands in our experiment, it provides a reasonable and intuitive
explanation of both our previous [26] and current work. After
passing through both avoided crossings, the Raman beams
and any remaining portion of the dipole trap are turned off
instantaneously and the BEC is imaged after 15 ms of time-
of-flight expansion, during the later portion of which, a Stern-
Gerlach field is applied to separate the mF spin components.
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FIG. 3. Measurement of Stueckelberg interference. (a) Two rep-
resentative modulation induced spin-orbit eigenlevels with �0 =
1.4Er (blue dashed line) and 1.7Er (black solid line). Both eigenlevel
calculations used �C = 0.3Er , fmod = 8 kHz, and δ = 0Er . (b) Mea-
sured Stueckelberg interference fringes in the BEC spin polarization
vs fmod at αF = 1680kr/s for �M = 0.7Er (blue) and 0.8Er (black).
The theoretical curves were calculated from Eq. (6) with �C = 0.3Er ,
σα = 0.07αF , fnp = 0.4, δ = 0, and the same �0 as in the experiment
(1.7Er for black and 1.4Er for blue).

Figures 2(c) and 2(d) show time-of-flight images and spin
polarizations respectively of BECs traversing along EL(q) and
E−(q), revealing the different spin-momentum locking in these
two ground dressed bands (without and with modulation). For
EL(q) we used �0 = 1.3Er , δ = 0Er, and �M = 0Er . For
E−(q) we used the same �0 and δ but �M was 1.3Er and
fmod was 10.56 kHz. All BECs were accelerated by gravity
(αF = 1680kr/s = 9.8 m/s2 along −ŷ). In panel (c), we show
representative time-of-flight images at q/kr = 1.0, 0.8, 0.5,
and −0.3 that highlight the difference in the spin composition
and the spin momentum locking between EL(q) and E−(q),

FIG. 4. Stueckelberg interference fringes in the spin polarization
of BECs at various values of the initial BEC acceleration, αF .
Varying αF changes the transport time through E+(q) and E−(q).
This experiment used �M = 0.7Er , �0 = 1.4Er , fmod = 8.5 kHz,
and δ = 0Er . The theoretical curves were calculated from Eq. (6) and
used �C = 0.33Er , σα = 0.07 × (1680kr/s), and fnp = 0.3. (The
fringe contrast is strongly reduced at smaller αF as the dephasing
effect of σα gets larger with longer total time.)

shown in the upper and lower rows, respectively. Panel (d)
shows the extracted spin polarization along both EL(q) and
E−(q). In EL(q), the measured BEC spin polarization (black
crosses) follows the calculated spin polarization (black line).
When a strong modulation of �M = 1.3Er is applied, the BEC
instead exhibits (purple circles) the distinct spin polarization
of E−(q) (purple dashed line). This modulation was strong
enough to open a sufficient gap �c so that the probability
for nonadiabatic intereigenlevel transitions in the modulated-
induced band structure was reasonably small (PLZ = 0.14).
Such small nonadiabatic intereigenlevel transitions ensured
that the spin polarization of the BECs were dominated by the
lower band E−(q). However, the measured spin polarization
of the BEC does not perfectly match the calculated spin
polarization of E−(q) after about 1 ms. We attribute this
to the imperfect loading into the modulation-dressed bands
and the weak but not completely negligible nonadiabatic
intereigenlevel transitions [26]. Nonetheless, this experiment
demonstrates the viability of modulated-Raman coupling to
create a more complicated spin-momentum locking in E−(q),
which is different from the previously studied ground band
EL(q) induced by a static Raman coupling, and may offer new
possibilities to explore spinor BEC physics.

IV. ENGINEERING A SPIN-RESOLVED STUECKELBERG
ATOM INTERFEROMETER

In addition to studying the more complex spin-momentum
locking of the modulation-dressed band, we also used the pair
of avoided crossings between E+(q) and E−(q) to engineer an
atom interferometer. [Such a pair of avoided crossings is not
realized in dressed eigenlevels created by unmodulated Raman
coupling; see Fig. 2(a) [33].] Stueckelberg interference [34,35]
can occur upon the recombination of a wave function that was
split along different energy eigenbands. By traveling along
different eigenbands, each component may acquire a different
phase. We observed such interference in our experiment after
the following sequence of events [as depicted in Figs. 2(b) and
3(a)]. First, the BEC was coherently split into two components
via a LZ transition at the avoided crossing A [labeled in
Fig. 2(b)]: one component along E+(q) and the other along
E−(q). Second, the components separately traveled along
E+(q) and E−(q) and thus acquired a different phase. Finally,
the two components recombined and interfered after another
LZ transition at the avoided crossing B. The final spin
composition of the BEC depends on the difference of the
phase accumulated by each component while traversing E+(q)
and E−(q); this phase difference depends on the energy
difference between those paths and the time it takes to traverse
them. If either the path or transport time is varied, the final
spin polarization of the recombined BEC will change. The
difference in energy between these bands as well as the
separation in q space between the beam splitters (i.e., the
avoided crossings) are tunable via fmod, and the transport time
is controlled by αF . We define 	 (which is sometimes referred
to as the Stueckelberg phase) as the total phase difference
acquired between the two components of a BEC traveling
separately along E+(q) and E−(q). This phase difference for
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FIG. 5. Effect of �M on Stueckelberg interference. (a) Observed Stueckelberg interference fringes for �M = 0.3Er and �0 = 1.3Er ,
�M = 0.7Er and �0 = 1.4Er , and �M = 1.2Er and �0 = 1.3Er for black circles, blue squares, and red triangles; all used δ = 0Er and
αF = 1680kr/s. All the theoretical curves were obtained from Eq. (6) with δ = 0Er , σα = 0.07αF , and the experimental values of �0. The
black, blue, and red lines used �C = 0.14,0.31,0.52Er and fnp = 0.4,0.45,0.5, respectively. (b) Measured fringe contrast M vs modulation
amplitude �M . The theory curve was generated assuming a linear relation of �C = �M/2.25, �0 = 1.4Er , fnp = 0.4, and σa = 0.07αF . Error
bars indicate numerical fitting uncertainty of the fringes. (c) Theoretical calculation of �C vs �M with δ = 0Er and �0 = 1.33Er . A linear fit
gives �C = �M/2.27. This calculated ratio between �C and �M is found to change by less than 10% in the range �0 experimentally accessed.

an atom with transport induced by a specific acceleration α is

	(α) =
∫ qB

qA

[E+(q) − E−(q)]dq/(h̄α). (4)

The output spin polarization, S, for an atom moving through
this interferometer with acceleration α is calculated as (see the
Appendix)

S(α) = 4[PLZ(α) − PLZ(α)2] cos[	(α)] − [1 − 2PLZ(α)]2.

(5)

We verified the operation of our modulation induced
Stueckelberg interformeter in S in three separate experiments.
[The interference fringes in S are due to the cos [	(α)] term
in Eq. (5).] In the first two experiments, we saw Stueckelberg
interference fringes while tuning 	 by separately changing
fmod and αF . Then, in the final experiment, we observed the
contrast of the spin polarization for different values of �M . The
results from these three experiments are respectively shown in
Figs. 3, 4, and 5.

First, at various values of fmod, we measured Stueckelberg
interference fringes using eigenlevel structures similar to those
shown in Fig. 3(a). When the driving frequency fmod is varied,
so are the energy difference E+(q) − E−(q) and the “lengths”
of the interferometer arms in q space. Consequently, according
to Eq. (4), the phase difference 	 is changed, which alters the
spin polarization S according to Eq. (5). Figure 3(b) shows
the measured spin polarization of the BEC after it has passed
through both avoided crossings with labels for the calculated
phase differences of 	 = 2π , 4π , and 6π . This experiment
was run at both �0 = 1.4 and 1.7Er , and the diagram Fig. 3(a)
shows that the smaller �0 had a greater energy separation
between its two modulation-dressed eigenlevels. This was
reflected in the interference fringes in Fig. 3(b): to reach the
same 	, �0 = 1.4Er required a smaller fmod (i.e., a smaller
qA − qB) as compared to �0 = 1.7Er .

The second method we used to tune 	 was instead at a fixed
fmod, but different times during which the BEC traveled along
E+(q) and E−(q). This transport time was varied by changing
the initial average acceleration of the BEC. The resulting
Stueckelberg interference fringes as a function of αF is shown
in Fig. 4. An optical dipole trapping force was applied to reduce
αF relative to that caused by gravity, and thus increase the time
that the BEC took to traverse the two energy paths (a similar
technique was used in Ref. [26]). Accelerations that caused
calculated phase accumulations 	 = 4π and 6π are labeled.
The reduced contrast at smaller αF is due to the increased
time for interactions to broaden the velocity distribution of
the BEC, and thus dephase the BEC as it traverses E+(q) and
E−(q). However, the fringes are still apparent and the model
agrees well with the experimental results.

A fraction of the atoms did not participate in the Stueckel-
berg interference in our experiments, likely due to nonadiabatic
initial state preparation in the modulation-dressed band. This
fraction is treated as a fitting parameter fnp. In addition, the
BEC may experience a nonuniform acceleration distribution
about αF due to atom-atom interactions. The nonuniform
acceleration is assumed to follow a Gaussian distribution,
n(α) = 1√

2πσα

exp [−(α − αF )2/(2σ 2
α )]. The values used in

this paper for σα are consistent with numerically calculated
solutions of the Gross-Pitaevski equation using a variational
method with Gaussian ansatz and parameters similar to these
experiments [36]. Accounting for n(α) and the nonparticipat-
ing fraction, the total spin polarization is calculated:

Stot = (1 − fnp)
∫

n(α)S(α)dα. (6)

Including both these effects, we obtain excellent agreement
with the experiment. This agreement with a time-averaged
modulation-dressed state picture for the eigenlevels is notable
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as the period of the modulation is approximately only an order
of magnitude shorter than the duration of the experiment [37].

The third verification of our interferometer came from
tuning the contrast of the Stuekelberg interference by tuning
�C , the gap size at the pair of avoided crossings. �C partially
determines PLZ and was tuned by varying �M . Thus changing
�M tunes the fraction of the BEC that splits into each leg
of the interferometer with maximum contrast expected for
PLZ = 0.5. Figure 5(a) shows Stueckelberg interference for
a few representative values of �M . Figure 5(b) shows the
spin contrast, defined as M = (Smax − Smin)/2, for various
values of �M . The results show how �M can be used to
control the Landau-Zener transitions and thus the interference
fringe amplitude. The relationship between �C and �M ,
calculated from the Floquet Hamiltonian, exhibits a nearly
linear dependence on �M . In fact, one finds that �C ≈
�M/2.27 as shown in Fig. 5(c). Experimentally we find
�C = �M/2.3 as the best estimate from our data, close to
the theoretical calculation.

V. CONCLUSIONS

In summary, we explored the modulation-dressed bands
of the SOC BEC created by modulating the Raman coupling
strength. We observed the more complicated spin-momentum
locking of the modulation-dressed band and engineered an
atomic interferometer with the pair of avoided crossings
between the modulation-dressed eigenlevels. Our measure-
ments of Stueckelberg interference fringes agree with the
theoretical analysis and thus confirm the treatment of the
periodically modulated coupling. Interestingly, since the SOC
is itself the result of dressing the single-particle dispersion
with a Raman coupling, this can be considered as “dressing”
the dressed states. This is another way to engineer novel
light-induced synthetic gauge fields (for other examples, see
Refs. [27,38]). These initial experiments show the promise
of this additional dressing, which offers new opportunities
to study novel SOC band structures [4,39]. For example, by
choosing appropriate values of �M , �0, and δ, we can realize
E−(q) with three degenerate minima, in contrast to the two
minima of EL(q). Such a novel SOC band and dispersion may
uncover new physics of spinor and SOC BECs and deserves
further exploration.
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APPENDIX: INTERFEROMETRY THEORY

We use the matrix method to solve for the BEC eigenlevel
population resulting from the BEC splitting, phase accumu-
lation, and recombination. |ψ±〉 indicates the wave function
in the E± eigenlevels, respectively, so the state of the BEC
is expressed as |ψ〉 = c+|ψ+〉 + c−|ψ−〉. In operator notation,
the state of the BEC is expressed as

|ψ〉 =
(

c+
c−

)
, (A1)

and the beam splitters take the form

B̂A =
(

−√
1 − PLZ

√
PLZ√

PLZ

√
1 − PLZ

)
, (A2)

B̂B =
(√

1 − PLZ

√
PLZ√

PLZ −√
1 − PLZ

)
, (A3)

in which PLZ is the probability to make a diabatic transition
in the modulation-dressed eigenlevels across the avoided
crossing, and the negative signs on the diagonals account for
phase shifts on the wave functions at each beam splitter [40].
The phase difference accumulated by the components of the
BEC can be accounted for by a phase operator defined by

	̂(φ) =
(

eiφ/2 0

0 e−iφ/2

)
, (A4)

where φ is the phase difference accumulated. Readout of the
final-state composition is done by Stern-Gerlach separation
of the bare-|mF 〉 states when the BEC has crossed both
A and B at a point when the E± eigenlevels match the
bare states to better than 97%, so that the spin polar-
ization = (NmF =0 − NmF =−1)/(NmF =0 + NmF =−1) ≈ (N|+〉 −
N|−〉)/(N|+〉 + N|−〉). Thus the readout of the spin polarization
is given by

Ŝ =
(

1 0
0 −1

)
. (A5)

The final state after the beam splitter A, phase operator,
and beam splitter B is thus |ψf 〉 = B̂B	̂B̂A|ψi〉. The spin

polarization reads 〈ψf |Ŝ|ψf 〉, and when solved with |ψi〉 = (0
1)

results in Eq. (5) of the main text.
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