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We propose a technique to measure multispin correlation functions of arbitrary range as determined by the
ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the
Stokes parameters, using focused lasers and microwave pulsing, can be related to n-spin correlators. We
discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent
spin-wave dynamics as a demonstrative example using our proposed technique.
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I. INTRODUCTION

The advent of optical lattice confinement of ultracold
atomic gases �1–4� opens the possibility of observing a vast
array of phenomena in quantum condensed systems �5�. In
particular, optical lattice systems may turn out to be the ideal
tools for the analog simulation of various strongly correlated
interacting lattice models �e.g., Hubbard model �2,3�, Kitaev
model �6�� studied in solid state physics. The great advantage
of optical lattices as analog simulators of strongly correlated
Hamiltonians lies in the ability of optical lattices to accu-
rately implement lattice models without impurities, defects,
lattice phonons, and other complications which can obscure
the observation of quantum degenerate phenomena in the
solid state.

In this context optical lattices can support a variety of
interacting spin models which to date have been only ap-
proximately or indirectly observed in nature or remain as
rather deep but unobserved mathematical constructs. Three
exciting possibilities are currently the subject of active study
�5�. The first �and the most direct� envisions simulation of
conventional condensed matter spin-lattice models in optical
lattices. Quantum magnetism arising from strong correlation
leads to many-body spin ground states that can be character-
ized by spin-order parameters. Spin order can, in some cases,
show long-range behavior arising from spontaneous symme-
try breaking, e.g., ferromagnetism and antiferromagnetism.
Such long-range spin-ordering phenomena are reasonably
well understood in most cases. Recent work also relates con-
ventional spin-order parameters to entanglement measures
which yield scaling behavior near quantum phase transitions
�7,8�. The second possibility, simulation of topological spin
states, arises from the surprising fact that optical lattices can
also �at least in principle� host more complicated spin models
previously thought to be academic. The ground states of
these models do not fall within the conventional Landau
paradigm, i.e., there is no spontaneously broken symmetry,
but show topological ordering and, as a result, display non-
trivial short-range behavior in spin correlation functions. Ex-
amples include the chiral spin-liquid model �9� and the Ki-
taev model �6,10–12�. Finally, optical lattices are also
particularly well suited to realize coherent and collective
spin dynamics because dissipation can be kept to suitably
low levels �13�.

While optical lattices offer the possibility of realizing all
three of the above examples one glaring question remains.

Once a suitable spin Hamiltonian is realized, how do we
observe the vast array of predicted phenomena in spin-
optical lattices? To date, time-of-flight measurements have
proven to yield detailed information related to two types of
important correlation functions of many-body ground states
of particles trapped in optical lattices. The first, a first-order
correlation function �the momentum distribution�, indicates
ordering in one-point correlation functions �14�. The second
is a second-order correlation function �the noise distribution�
which indicates ordering in two-point density-density corr-
elators �15–18�. The former can, for example, detect long-
range phase coherence while, as we will see below, the latter
is best suited to probe long-range order in two-point correla-
tion functions, e.g., the lattice spin-spin correlation function.
We note that recent proposals suggest that time-of-flight im-
aging can in principle be used to extract other correlation
functions �19,20�.

In this paper we propose a technique to observe equal
time n-spin correlation functions characterizing both long-
and short-range spin ordering useful in studying all three
classes of spin-lattice phenomena mentioned above. Our pro-
posal utilizes realistic experimental techniques involving fo-
cused lasers, microwave pulsing, and fluorescence detection
to effectively measure a general n-spin correlation function
defined by

��� jk
,k = 1, . . . ,n� � ��	


k=1

n

� jk

�jk	�� , �1�

where � is the many-body wave function of the atomic en-
semble, �jk� is a set of sites, and � jk

�jk �� jk
=0,1 ,2 ,3� are

Pauli spin operators at sites jk with the notation �0= I, �1

=�x, �2=�y, and �3=�z. Examples of order detectable with
one-, two-, and three-spin correlation functions are magneti-
zation ��� j

z�=1�, antiferromagnetic order ��� j
z� j�

z �= �−1� j−j��,
and chiral spin-liquid order ��� j · �� j��� j���=1�, to name a
few.

In general our proposed technique can be used to experi-
mentally characterize a broad class of spin-lattice models of
the form

H�J;A� = J�t��
�jk�

A�jk�


k=1

M

� jk

�jk� , �2�

where J has dimensions of energy and can vary adiabatically
as a function of time, t, while the dimensionless parameters
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A�jk� are kept fixed. For example, M =2 represents the usual
two-body Heisenberg model. Several proposals now exist for
simulating two-body Heisenberg models �5,10�. In the fol-
lowing we, as an example, consider optical lattice implemen-
tations of the Heisenberg XXZ model,

HXXZ�J;�� = J
 �
�j,j��

�� j
x� j�

x + � j
y� j�

y � + �� j
z� j�

z � , �3�

where �j , j�� denotes nearest neighbors and � and J are
model parameters that can be adjusted by, for example, vary-
ing the intensity of lattice laser beams �10�.

The paper is organized as follows: in Sec. II we show that,
in practice, short-range spin correlations are difficult to de-
tect in noise correlation measurements. Section III lays out a
general procedure for detecting n-spin correlations with local
probes. An experimental scheme for realizing such a proce-
dure is proposed and a quantitative feasibility analysis is
presented. Section IV is devoted to an investigation of the
time dependence of correlation functions using the tech-
nique. In particular, we show how the technique can be used
to engineer and probe spin-wave dynamics. We conclude in
Sec. V.

II. LOCAL CORRELATIONS IN TIME OF FLIGHT

We first discuss the measurement of spin-spin correlation
functions by analyzing spatial noise correlations �two-point
density-density correlations�, i.e., ��n�r��n�r����− �n�r���
��n�r����� / �n�r����n�r���� in time-of-flight images from atoms
confined to an optical lattice modeled by the XXZ Hamil-
tonian. The ground states of this and a variety of spin models
can be characterized by the spin-spin correlation function
between different sites. For instance, the spin-spin correla-
tion function in a one-dimensional XXZ spin chain
�with J�0�, shows power-law decay

�� j
z� j�

z � � �− 1� j−j�/	j − j�		 �4�

in the critical regime �−1
��1�, where
	=1/ �1− 1

� cos−1 ��. In principle this correlation function
can be probed by spatial noise correlation in time of flight.

We argue that, in practice, short-range correlations �e.g.,
	�1 in the XXZ model� are difficult to detect in time-of-
flight noise correlation measurements. To see this note that
the noise correlation signal is proportional to �15�

G�Q�r − r��� = �
j,j�

eiQ�j�−j�a�� j
z� j�

z � , �5�

where Q is the lattice wave vector which gets mapped into
coordinates r and r� in time of flight on the detection screen,
and a is the lattice spacing. Including normalization the noise
correlation signal is proportional to N−1 for systems with
long-range order �e.g., antiferromagnetic order giving 	=0
in the above XXZ model� but shows a much weaker scaling
for short-range correlations. In fact the ratio between corr-
elators in a ground state with 	�1 �short-range power-law
order� and 	=0 �long-range antiferromagnetic order� scales
as N−1 making the state with power-law correlations rela-

tively difficult to detect in large systems. To illustrate this we
compare the calculated noise correlation amplitude, G, in
Fig. 1 for two cases 	=0 �solid line� and 	=2 �dashed line�
with N=20 �Fig. 1�a�� and N=200 �Fig. 1�b�� for the 1D XXZ
model. We see that the correlation amplitude for short-range
�power-law� order is extremely small in comparison to long-
range antiferromagnetic order for large N.

The small correlation signal originates from the fact that
the noise correlation method is in practice a conditional
probability measuring collective properties of the whole sys-
tem, while short-range spin correlations describe local prop-
erties and are therefore best detected via local operations. In
the following we propose a local probe technique to measure
local correlations thus providing an experimental scheme
which compliments the time-of-flight–noise correlation tech-
nique, best suited for detecting long-range order.

III. DETECTING n-SPIN CORRELATION WITH LOCAL
PROBES

A. General procedure

We find that general n-spin correlators,
��� jk

,k=1, . . . ,n�, can be related to the Stokes parameters
broadly defined in terms of the local reduced density matrix

=Tr�jk,k=1,. . .,n� 	����	 on sites �jk ,k=1, . . . ,n�, where the
trace is taken on all sites except the set �jk�. The Stokes
parameters �21� for the density matrix 
 are S�j1

. . ..�jn

=Tr�

k=1
n � jk

�jk� leading to the decomposition


 = 2−n �
�j1

,¯,�jn
=0

3 
S�j1
. . .�jn



k=1

n

� jk

�jk� . �6�

Using the theory of quantum state tomography �21�, we find
the n-spin correlators
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FIG. 1. �Color online� Noise correlation plotted as a function of
wave vector of the one-dimensional XXZ model. The solid �dashed�
line corresponds to a ground state with 	=0, long-range
�	=2, short-range� spin correlator. The amplitudes are normalized
by the maximum for antiferromagnetic order �	=0�. The number of
atoms in panels �a� and �b� are N=20 and N=200, respectively.
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��� jk
,k = 1, . . . ,n� = 


k=1

n

�P�	��jk
�� ± P�	��jk

� ��� , �7�

where the plus �minus� sign indicates a 0 �nonzero� index
and �	��jk

� , 	��jk

� �� denote the measurement basis for the atom

at jk. We define the measurement basis to be 	�1�= �	↓ �
+ 	↑ �� /�2, 	�1

��= �	↓ �− 	↑ �� /�2, 	�2�= �	↓ �+ i 	 ↑ �� /�2, 	�2
��

= �	↓ �− i 	 ↑ �� /�2, 	�3�= 	↓ �, 	�3
��= 	↑ �. Finally, P�	��jk

�� is

the probability of finding an atom in the state 	��jk
�.

The expansion of the product defining � then yields a
quantity central to our proposal,

��� jk
,k = 1, . . . ,n� = �

l=1

n

�− 1�lPl, �8�

where Pl is the probability of finding l sites in the states 	� jk
��

and n− l sites in 	� jk
�. Equation �8� shows that the n-spin

correlation function can be written in terms of experimental
observables. We can now write a specific example of the
two-spin correlation function �discussed in the preceding
section� in terms of observables: ��3,3�= P	↓�j1

	↓�j2
+ P	↑�j1

	↑�j2
− � P	↓ �j1	↑ �j2

+ P	↑�j1
	↓�j2

� . In the following subsection we dis-

cuss a specific experimental procedure designed to extract
precisely this quantity using local probes of cold atoms con-
fined to optical lattices.

B. Proposed experimental realization

We now describe and critically analyze an experimental
procedure designed to find the probabilities, Pl, from which
we can determine the spin-correlation function
��� jk

,k=1, . . . ,n� through Eq. �8�. To illustrate our technique
we consider a specific experimental system: 87Rb atoms con-
fined on a single two-dimensional �xy plane� optical lattice
with two hyperfine ground states 	↓ ��	F=1,mF=−1� and
	↑ ��	F=2,mF=−2� chosen as the spin of each atom. Here
the atomic dynamics in the z direction are frozen out by high
frequency optical traps �22�. However, the scheme can be
directly applied to three-dimensional optical lattices by using
one additional focused laser which propagates along the xy
plane and plays the same role as the focused laser �propagat-
ing along the z axis� discussed in the following step �II�.

In the Mott insulator regime with one atom per lattice site
spin Hamiltonians, defined in Eq. �2�, may be implemented
using spin-dependent lattice potentials in the superexchange
limit �10�. The spin coupling J�t�, i.e., the overall prefactor in
Eq. �2�, can be controlled by varying the lattice depth. Our
proposed experimental procedure will build on such spin
systems, although it can be generalized to other implemen-
tations where H is generated by other means. In the spin
systems, the ground states are strongly correlated many-body
spin states and their properties can be characterized by the
spin correlations between atoms at different lattice sites.

Step �I�. We start with a many-body spin state �0 and turn
off the spin-spin interactions generated by superexchange be-
tween lattice sites. We achieve this by ramping up the spin-
dependent lattice depth to �50ER adiabatically with respect

to the band splitting, where ER=h2 /2m�2 is the photon recoil
energy and � is the wavelength of the optical lattice. The
ramp up time for each lattice is chosen properly so that only
the overall energy scale J�t� in the spin Hamiltonian �2� is
modified, which preserves the highly correlated spin state
�0. In the deep lattice, the time scale for the spin-spin inter-
actions ��� /J�10s� becomes much longer than the time
��1 ms� taken to perform the spin-correlation measurement.
The spin-spin interactions play no role in the measurement
process and the following detection steps are quickly per-
formed on this “frozen” many-body spin state �0.

Step �II�. In this step, we selectively transfer target atoms
A at site�s� jk �chosen a priori� to a suitable measurement
basis �	� jk

� , 	� jk
��� from initial states �	↓ � jk

, 	↑ � jk
�, without af-

fecting nontarget atoms B at other sites �Fig. 2�a��. Selective
manipulation of quantum states of single atoms in optical
lattices is currently an outstanding challenge for investigat-
ing physics in an optical lattice, because spatial periods of
typical optical lattices are shorter than the optical resolution.
In Ref. �23�, a scheme for single atom manipulation using
microwave pulses and focused lasers is proposed and ana-
lyzed in detail. Here we apply the scheme to selectively
transfer atoms between different measurement bases.

To manipulate a target atom A, we adiabatically turn on a
focused laser that propagates along the ẑ axis having the
maximal intensity located at A. The spatially varying laser
intensity I�r� induces position-dependent energy shifts

�Ei�r� = �iI�r� �9�

for two spin states 	↓ � and 	↑ �, where the parameter �i for
state 	i� �i=↓ or ↑� is determined by the focused laser param-
eters. Different polarizations and detunings of the focused
laser lead to different �i and thus yield different shifts of the
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FIG. 2. �Color online� Schematic plot of the experimental pro-
cedure used to measure n-spin correlation functions. A indicates one
of the target atoms. B indicates all other atoms. �a� Target atoms A
are transferred to a suitable measurement basis using a combination
of focused lasers and microwave pulses �see step �II��. �b� Atoms at
state 	↓ � are transferred to state 	2� by two microwave � pulses,
then atoms at state 	↑ � are transferred to state 	↓ � by another mi-
crowave � pulse �see step �III��. �c� Target atoms A are transferred
back to state 	↑ � from 	↓ � �see step �IV��. �d� A detection laser is
applied to detect the probability of finding target atoms at 	↑ �
�see step �IV��.
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hyperfine splittings 	�E�r� 	 = 	�E↑�r�−�E↓�r�	 between two
spin states. We choose a �+-polarized laser that drives the
5S→6P transition to obtain a small diffraction limit. The
wavelength � f �421 nm �corresponding to a detuning
�0=−2��1209 GHz from the 6 2P3/2

2 state� is optimized to
obtain the maximal ratio between energy splittings of two
spin states and the spontaneous scattering rate �23�.

Because of the inhomogeneity of the focused laser inten-
sity I�r�, 	�E�r�	 reaches a maximum at the target atom A
and decreases dramatically at neighboring sites. Therefore
the degeneracy of hyperfine splittings between different at-
oms is lifted. By adjusting the focused laser intensity, the
differences of the energy shifts �= 	�E�0� 	−	�E�� /2�	 be-
tween target atom A and nontarget neighboring atom B can
be varied and calculated through Eq. �9�. Here we choose
�=74ER because it balances the speed and fidelity of single
spin manipulation, leading to less spontaneously scattered
photons from the target atoms in the spin-dependent focused
lasers. To avoid excitations of atoms to higher bands of the
optical lattice, the rise speed of the focused laser intensity
should satisfy the adiabatic condition. We use the adiabatic
condition to estimate the ramp up time of the focused laser to
be 35 �s to give a 10−4 probability for excitation to higher
bands.

We then change the measurement basis by applying a mi-
crowave � /2 pulse that drives a suitable rotation to target
atoms A �Fig. 2�a��. The microwave is resonant with the
hyperfine splitting between two spin states of the target at-
oms A, but has a detuning larger than � for nontarget atoms
B. Consider a pulse with Rabi frequency

��t� = �0 exp�− �0
2t2� �− tf � t � tf�

and parameters �0=14.8ER /�, �0=13.1ER /�, and tf =5/�0.
The pulse transfers the measurement basis of the target at-
oms A in 16.9 �s, while the change in the quantum state of
nontarget atoms is found to be below 3�10−4 by numeri-
cally integrating the Rabi equation that describes the cou-
pling between two spin states by the microwave pulse. The
focused lasers are adiabatically turned off after the micro-
wave pulse. During the step �II�, the probability for sponta-
neous scattering of one photon from target atoms inside the
focused laser can be roughly estimated as P���i

�f �

��V�t�dt
�2�10−4, where �i and � f represent the times when the
focused laser is turned on and off, � is the decay rate of 6P
state, � is the detuning, and V�t� is the potential depth of the
focused laser.

The distance between any two target atoms can be as
short as a lattice spacing. This is because the basis transfer
processes for different target atoms are preformed sequen-
tially in time, i.e., the process for an atom at site j2 starts
after the process for an atom at site j1 is accomplished. In the
special case that sites j1 and j2 are spatially well separated
and the final basis �	� jk

� , 	� jk
��� at two sites are the same, the

transfer process can be done simultaneously for two sites
with one microwave pulse.

Step �III�. In this step, we transfer all atoms to the
	F=1� hyperfine level �Fig. 2�b�� to avoid stray signal in the
detection step �IV�. We apply two � microwave pulses to

transfer all atoms at 	↓ � first to 	F=2,mF=0� then to 	2�
�	F=1,mF=1�. Another � microwave pulse is then applied
to transfer all atoms at 	↑ � to 	↓ �. The � microwave pulse
can be implemented within 12.5 �s for a microwave Rabi
frequency �=2��40 kHz.

Step �IV�. We transfer target atoms A at jk from 	↓ � back
to 	↑ � with the assistance of the focused lasers and micro-
wave pulses �Fig. 2�c��, using the same atom manipulation
procedure as that described in step �II�. We then apply a
detection laser resonant with

	↑� → 	3� � 	5 2P3/2:F = 3,m = − 3�

to detect the probability of finding all target atoms at 	↑ �
�corresponding to the basis state 	� jk

�� because we transferred
atoms to the measurement basis in step �II�� �Fig. 2�d��. The
beam size of the detection laser should be large enough so
that target atoms at different sites �jk� experience the same
laser intensity, and scatter the same number of photons if
they are in the 	↑ � state. The fluorescence signal �the number
of scattered photons� is from one of the n+1 quantized lev-
els, where the lth level �l=0, . . . ,n� corresponds to states
with l sites of target atoms on state 	↑ � �	� jk

���. By repeating
the whole process many times, we obtain the probability dis-
tribution Pl, and thus the spin correlation function
��� jk

,k=1, . . . ,n� via Eq. �8�.
The scattering photons of the fluorescence signals come

mostly from the target atoms A at state 	↑ � �Fig. 3�. Signal
from atoms at any 	F=1� state is suppressed because of the
large hyperfine splitting ���2��6.8 GHz� between 	F=1�
and 	F=2� states. Atoms B do not contribute to the fluores-
cence signal because they are already transferred to the
	F=1� state in step �III�. The dynamics of photon scattering
is described by the optical Bloch equation �24�,

d

dt

33 = − �
33 +

i

2
��
13 − 
31� ,
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FIG. 3. �a� Time evolution of the probability for the target atoms
A to be in the excited state 	3�. �b� The number of scattering photons
np

A versus time for atoms A at state 	↑ �. �c� The number of scattering
photons np

B versus time for atoms �A or B� at states 	↓ � and 	2�. �d�
The number of scattering photons np

A versus the Rabi frequency of
the resonant laser for atoms A at state 	↑ �. �e� The number of scat-
tering photons np

B versus the Rabi frequency of the resonant laser
for atoms �A or B� at states 	↓ � and 	2�. The time period for �d� and
�e� is 50/�.
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d

dt

13 = − 
�

2
+ i�0�
13 +

i

2
��2
33 − 1� ,

d

dt

31 = − 
�

2
− i�0�
31 −

i

2
��2
33 − 1� , �10�

where 
33�t�= 	c3�t�	2 is the probability for the atom to be in
the excited state 	3�, 	1� represents state 	↑ � for target atom A
at state 	↑ � and 	F=1� for other cases, 
13�t�=c1�t�c3

*�t�ei�0t,

31�t�=
13

* �t�. The detuning of the laser �0 is zero for target
atoms A at state 	↑ � and �� for all nontarget atoms B and
part of the target atoms A at hyperfine state 	2�. �=2�
�6.07 MHz is the decay rate of the excited state 	3�, � is
the Rabi frequency of the resonant laser that is related to the
on-resonance saturation parameter by s0=2 	�	2 /�2.

We numerically integrate the optical Bloch equation and
calculate the number of scattering photons

np�t� = ��
0

t


33�t��dt� �11�

for both target and nontarget atoms. In Fig. 3�a�, we plot the
probability 
33

A for target atoms A at state 	3� with respect to
time. We see 
33

A increases initially and reaches the saturation
value s0 /2�1+s0�. The number of scattering photons reaches
20 in a short period, 1.3 �s for atoms A at 	↑ � �Fig. 3�b��, but
it is only 10−5 for nontarget atoms B and target atoms A at
state 	2� �Fig. 3�c��. Therefore the impact of the resonant
laser on the nontarget atoms B can be neglected. In Figs. 3�d�
and 3�e�, we see that for a wide range of Rabi frequencies
�laser intensities�, the scattering photon number for the non-
target atoms B is suppressed to undetectable levels, below
10−4.

Unlike the noise correlation method, the accuracy of our
detection scheme does not scale with the number of total
atoms N, but is determined only by manipulation errors in
the above steps. We roughly estimate that n-spin correlations
can be probed with a cumulative error 
n�10−2, which is
sufficient to measure both long- and short-range spin-
correlation functions. Our estimate takes into account pos-
sible experimental errors in all four steps, and the fact that
the same experimental procedure is repeated many times to
determine the probability Pl. The total failure probability of
the four-step detection process is p�n��n�10−3 for n target
atoms to give an incorrect measurement of the target atom
quantum state for determining the quantity Pl. Assuming that
the experimental procedure is repeated � times, the total
probability for obtaining one incorrect measurement result is
about �p�n�. Since one incorrect measurement result leads to
an error �1/� in Pl, the expectation for the error is �p�n�
�1/�= p�n�, which should be chosen to be 1/� to minimize
the total error. In addition, the uncertainty in measurements
of probability Pl itself in repeated experiments is also about
1 /�. Taking into account all of these errors, we find that
n-spin correlations can be probed with an error that scales as
Cp�n�, where C�3 in our rough estimate. As a conservative

estimate, we take C=10 to give an overall error in measuring
n-spin correlation function ��� jk

,k=1, . . . ,n� to be less than
10p�n��n�10−2.

We note that the scheme requires repeated production of
nearly the same condensate and repeated measurements, two
standard techniques which have been realized in many ex-
periments. We have proposed a powerful technique for inves-
tigating strongly correlated spin models in optical lattices
and now consider one of several possible applications.

IV. SPIN-WAVE DYNAMICS

Our technique can be used to investigate time dependence
of correlation functions. In the following, we show how our
scheme can be used to engineer and probe spin-wave dynam-
ics in a straightforward example, the Heisenberg XX model
realized in optical lattices with a slightly different implemen-
tation scheme than the one discussed in the preceding sec-
tion. Consider a Mott insulator state with one boson per lat-
tice site prepared in the state 	0��	F=1,mF=−1� in a three-
dimensional optical lattice. By varying the trap parameters or
with a Feshbach resonance, the interaction between atoms
can be tuned to the hard-core limit. With large optical lattice
depths in the y and z directions, the system becomes a series
of one-dimensional tubes with dynamics described by the
Bose-Hubbard Hamiltonian,

Hs = − ��t��
j

�aj
†aj+1 + aj+1

† aj� . �12�

This Bose-Hubbard model can be solved exactly. It offers a
testbed for spin-wave dynamics by mapping the Hamiltonian
�12� onto the XX spin model, HXXZ�−2� ;�=0�, with the
Holstein-Primakoff transformation �25�.

We now study the time-dependent behavior of the XX
model using our proposed scheme. In the Heisenberg picture,
the time evolution of the annihilation operator can be written
as aj�t�=� j�aj��0�ij�−jJj�−j���, where Jj�−j��� is the Bessel
function of the interaction parameter ��t�=2�0

t ��t��dt�. To
observe spin-wave dynamics, we first flip the spin at one site
from ↑ to ↓, which, in the bosonic degrees of freedom, cor-
responds to removing an atom at that site. Because of the
spin-spin interactions, initial ferromagnetic order gives way
to a reorientation of spins at neighboring sites which propa-
gates along the spin chain in the form of spin waves. This
corresponds to a time-dependent oscillation of atom number
at each site. Therefore, spin-wave dynamics can be studied in
one- and two-point spin-correlation functions by detecting
the oscillation of the occupation probability at certain sites
and the density-density correlator between different sites,
respectively.

Single atom removal at specific sites can be accomplished
with the assistance of focused lasers. With a combination of
microwave radiation and two focused lasers �propagating
along y and z directions, respectively�, we can selectively
transfer an atom at a certain site from the state 	0� to the state
	4��	F=2,mF=−2�. A laser resonant with the transition
	4�→ 	3��	5 2P3/2 :F=3,m=−3� is then applied to remove
an atom at that site. Following an analysis similar to the one
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above, we see that the impact on other atoms can be ne-
glected. To observe fast dynamics of spin-wave propagation,
we may adiabatically ramp down the optical lattice depth
�and therefore increase �� from the initial depth V0=50ER to
a final depth 13ER, with a hold time, thold, to let the spin
wave propagate. Finally, the lattice depth is adiabatically
ramped back up to V0 for measurement. The time depen-
dence of the lattice depth in the ramping down process is
chosen to be

V�t� = V0/�1 + 4�2PexeV0/ER�rt� , �13�

where Pexe is the probability of making an excitation to
higher bands and �R=ER /�. For Pexe=4�10−4, we find the
interaction parameter to be ��thold�=0.0146+0.0228�Rthold,
with the tunneling parameter

��t� = �4/���ER
1/4V3/4�t�exp�− 2�V�t�/ER� . �14�

Two physical quantities that can be measured in experi-
ments are the single atom occupation probability

Dj��� = ��	aj
†aj	�� = �

l��

Jl−j
2 ��� �15�

at the site j, and the density-density correlator

Gjj���� = ��	aj
†ajaj�

† aj�	�� = �
l��,���

Jl−j
2 ���J�−j�

2 ���

− �
l��

�Jl−j
2 ���Jl−j�

2 ���

+ Jl−j���J�−j���J�−j����Jl−j����� �16�

between sites j and j�, where � is the initial wave function
with one removed atom at site �. The former is related to the
local transverse magnetization through

��	sj
z���	�� = Dj��� − 1/2, �17�

and the latter is related to the spin-spin correlator via

Gjj���� = ��	sj
z���sj�

z ���	�� + �Dj��� + Dj�����/2 + 1/4.

�18�

In Fig. 4, we plot Dj��� and Gjj���� with respect to the
interaction parameters � �which scales linearly with holding
time�. Here the initial empty site at j=0 is located at the
center of the spin lattice. We see different oscillation behav-
ior at different sites. Initially, all sites are occupied except
j=0, i.e., Dj�0�0�=1, Dj=0�0�=0 �Fig. 4�a��. The initial spin-
spin correlation Gjj��0� between different sites is zero if ei-
ther j or j� is zero, and one if both of them are nonzero �Fig.
4�b��. As � increases, atoms start to tunnel between neigh-
boring sites and the spin wave propagates along the one-
dimensional optical lattice, which is clearly indicated by the

increase �decrease� of the site occupation at j=0 �j�0�. In
Fig. 4, the oscillation of Dj��� and Gjj���� in a long time
period and the decay of the oscillation amplitudes originate
from the finite size of the spin lattice, which yields the re-
flection of the spin waves at the boundaries.

To probe the single site occupation probability Dj���, we
use two focused lasers and one microwave pulse to transfer
the atom at site j to 	4�. A laser resonant with the transition
	4�→ 	3� is again applied to detect the probability to have an
atom at 	4�, which is exactly the occupation probability
Dj���. To detect Gjj����, we transfer atoms at both sites j
and j� to the state 	4� and use the same resonant laser to
detect the joint probability for atoms at 	4�. The fluorescence
signal has three levels, which correspond to both atoms
Gjj����, one atom Dj�t�+Dj��t�, and no atoms at state 	4�. A
combination of these measurement results gives the spin-spin
correlator �� 	sj

z���sj�
z ��� 	��.

V. CONCLUSION

We find that a relation between general spin-correlation
functions and observable state occupation probabilities in op-
tical lattices allows for quantitative measurements of a vari-
ety of spin correlators with the help of local probes, specifi-
cally focused lasers and microwave pulsing. Our proposal
includes a realistic and practical quantitative analysis sug-
gesting that n-spin correlations can be probed with an error

n�10−2, which is sufficient to measure both long- and
short-range spin-correlation functions. Our work establishes
a practical and workable method for detecting n-spin corre-
lations for cold atoms in one-, two- or three-dimensional
optical lattices. Applications to a broad class of spin physics
including topological phases of matter �6,12� realized in
spin-optical lattices are also possible with our proposed tech-
nique.
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