
Anisotropic Weyl Fermions from the Quasiparticle Excitation Spectrum
of a 3D Fulde-Ferrell Superfluid

Yong Xu, Rui-Lin Chu, and Chuanwei Zhang*

Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA
(Received 28 October 2013; revised manuscript received 1 February 2014; published 31 March 2014)

Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not
been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around
band touching points of single-particle energy dispersions in certain solid state materials (named Weyl
semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in
the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid.
By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number
and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study
the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids,
which are detectable in experiments.
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Introduction.—Weyl fermions [1] are massless chiral
Dirac fermions with linear energy dispersions in momentum
space. Recently, the existence of Weyl fermions has been
explored in various solid state materials, such as pyrochlore
iridates [2,3], ferromagnetic compound HgCr2Se4 [4],
multilayer topological insulators [5], photonic crystals [6],
as well as in optical lattices [7,8]. These materials, named
Weyl semimetals, possess band touching points in their
single-particle energy spectrum, around which the energy
dispersions are linear and can be described by a chiral Weyl
equation. These band touching points (i.e., Weyl nodes)
appear in pairs with opposite topological invariance [9].
In contrast to two-dimensional (2D) Dirac fermions (e.g.,
graphene), which are unstable against perturbations that
break time-reversal or spatial inversion symmetries, Weyl
nodes are stable and the onlyway to destroy them is tomerge
two Weyl nodes with opposite topological invariances.
The recent progress in experimental observations of

Majorana fermions (half of a regular Dirac fermion) using
quasiparticle excitations in solid state topological super-
conductors [10–13] leads to a nature question: whether
Weyl fermions can also be observed in the quasiparticle
excitation spectrum (instead of single-particle spectrum)
of superconductors or superfluids (e.g., 2He A phase)
[9,14,15]. While Majorana fermions in superconductors
emerge as quasiparticle excitations in real space (inside
defects) and low dimensions (1D or 2D), Weyl fermions
describe energy dispersions in momentum space in three
dimensions. Therefore, the semiconductor-superconductor
heterostructures for observing Majorana fermions, where
superconductivity is induced through proximity effects, are
not suitable for the observation of Weyl fermions.
The recent experimental realization of spin-orbit (SO)

coupling [16–21] in ultracold atomic gases provides another
platform for exploring a variety of intriguing physics,

including topological superfluids with Majorana fermions
[22–29]. In particular, the low-temperature phase diagram
of spin-orbit-coupled Fermi gases is dominated by Fulde-
Ferrell (FF) superfluids with finite momentum pairing
[30–40] in the presence of an in-plane Zeeman field, even
in three dimensions. In one and two dimensions, such FF
superfluids can support Majorana fermions [41–44].
However, whether such a FF superfluid state can support
Weyl fermion excitations has not been explored.
In this Letter, we show that Weyl fermions can emerge

from quasiparticle excitation spectrum of a 3D FF super-
fluid. The system we consider is a 3D degenerate Fermi gas
with Rashba spin-orbit coupling (in the xy plane) and
Zeeman fields [in-plane (hx) and out-of-plane (hz)]. The in-
plane Zeeman field breaks the spatial inversion symmetry
of the Fermi surface, yielding finite momentum pairing
[32]. The rich phase diagrams in such 3D FF superfluids
are obtained. In suitable parameter regions, we find band
touching points between particle and hole branches in the
quasiparticle excitation spectrum of the FF superfluid,
which possess nonzero topological invariances and aniso-
tropic linear dispersions along all three directions, indicat-
ing the existence of anisotropic Weyl fermion excitations.
The properties of Weyl fermions, including their number
and position, creation, and annihilation, and anisotropy,
can be controlled by varying Zeeman fields and interaction
strength between atoms. Finally, we investigate the sig-
nature of anisotropicWeyl fermion excitations in the speeds
of sound of the FF fermionic superfluids, which are mea-
surable in experiments.
Model and effective Hamiltonian.—We consider a 3D

Fermi gas with s-wave contact interactions. The many-body
Hamiltonian can be written asH ¼ R

drΨ̂†ðrÞHsðp̂ÞΨ̂ðrÞ−
U
R
drΨ̂†

↑ðrÞΨ̂†
↓ðrÞΨ̂↓ðrÞΨ̂↑ðrÞ, where the single-particle

Hamiltonian Hsðp̂Þ ¼ ðp̂2=2mÞ − μþHSOCðp̂Þ þHz with
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momentum operator p̂ ¼ −iℏ∇, chemical potential μ,
attractive interaction strength U, and the atom mass m;
the Rashba SO coupling HSOCðp̂Þ ¼ αðp̂ × σÞ · ez with
Pauli matrix σ; the Zeeman field is along the x (in-plane)
and z (out-of-plane) directions, Hz ¼ hxσx þ hzσz. Ψ̂ðrÞ ¼
½Ψ̂↑ðrÞ; Ψ̂↓ðrÞ�T and Ψ̂†

νðrÞ [Ψ̂νðrÞ] is the fermionic atom
creation (annihilation) operator.
The thermodynamical potential in mean-field approxi-

mation can be written as

Ω ¼ jΔj2=U þ
X
k

½ℏ2ð−kþQ=2Þ2=2m − μ�

−
X
k;σ

1

2β
lnð1þ e−βEkσ Þ: (1)

Here, Ekσ is the eigenvalue of the 4 × 4 Bogoliubov–de
Gennes (BdG) Hamiltonian

HB ¼
�
HsðkþQ=2Þ Δ0

Δ0 −σyHsð−kþQ=2Þ�σy

�
; (2)

Q ¼ Qyey is the totalmomentumof theCooper pair induced
by the deformation of the Fermi surface [32]. Themean-field
solutions of Δ0, Qy, and μ satisfy the saddle point equa-
tions ∂Ω=∂Δ0 ¼ 0, ∂Ω=∂Qy ¼ 0, and the atom number
equation ∂Ω=∂μ ¼ −n with a fixed total atom density n.
To regularize the ultraviolet divergence at large k, we
follow the standard procedure [45] ð1=UÞ ¼ ðm=4πℏ2asÞ −R ðdk=ð2πÞ3Þðm=ℏ2k2Þwith the s-wave scattering length as.
The self-consistent solution is obtained through the mini-
mization of the free energy F ¼ Ωþ μn. The energy unit
is chosen as the Fermi energy EF ¼ ℏ2K2

F=2m of non-
interacting Fermi gases without SO coupling and Zeeman
fields with Fermi vector KF ¼ ð3π2nÞ1=3.
BCS-BEC crossover and phase diagram.—In Fig. 1, we

plot the change of μ,Δ0, andQy in the BCS-BEC crossover
at zero temperature. With increasing 1=KFas, Δ0 increases
and μ decreases, signaling the crossover from BCS

superfluids to BEC molecules. In the BEC limit, Δ0, μ,
and Qy become the same for different values of (hx, hz)
since fermion atoms form bound molecules. Henceforth,
we focus on the BCS region. In this region, Δ0 is smaller
when the total Zeeman field h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2z

p
is larger. The

nonzero Qy in the presence of hx indicates the existence of
Cooper pairings with finite center-of-mass momenta.
In Fig. 2(a), we map out the zero-temperature mean-field

phase diagram in the (hx, hz) plane. In 3D Fermi gases,
quantum fluctuations generally do not change the phase
diagram qualitatively [46,47]. The uniform superfluid
phase (with zero total momentum pairing), which exists
at hx ¼ 0, is replaced by the gapped FF phase [36,37] in the
presence of a small in-plane Zeeman field hx because of
the broken inversion symmetry of the Fermi surface. To
characterize different phases, we consider the quasiparticle
gap Eg that represents the energy difference between the
minimum of the particle branch and the maximum of the
hole branch (Eg > 0, gapped; Eg ≤ 0, gapless). The topo-
logical FF (TFF) phase that supports Weyl fermions in the
quasiparticle excitation spectrum appears in the large hz
region. The topological FF phase is gapped except at Weyl
nodes, where Eg ¼ 0. The critical hz for the transition to
the TFF phase decreases as hx increases and reaches the
minimum hz ¼ 0.14EF at hx ¼ 0.45EF. In the absence of
hz, the gapless FF phase appears with a large range of hx
[36,37], while the region is extremely small [shown in
the inset of Fig. 2(a)] in the presence of hz. Instead, a
new phase called gapless topological FF phase dominates
the remaining parameter region because of the large total
Zeeman field. This phase possesses nontopological gapless
excitations in addition to topological Weyl fermions, which
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FIG. 1 (color online). Plot of Δ0 in (a), μ in (b), andQy in (c) as
a function of 1=KFas for different parameters (hx, hz). αKF ¼ EF
and the temperature T ¼ 0.
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FIG. 2 (color). (a) Mean-field phase diagrams of 3D spin-orbit-
coupled Fermi gases. The area in the small black box is enlarged
in the inset, which shows the gapless FF phase. NG: Normal gas.
(b) Contours of the zero energy quasiparticle spectrum in the
plane (ky, kz) with kx ¼ 0. Here, hx ¼ 0.5EF, hz ¼ 0 (blue line),
hz ¼ 0.2EF (red line), hz ¼ EF (green line), and hx ¼ 0.2EF,
hz ¼ EF (black points) correspond to blue, red, green, and black
square points in (a). The brown point in the gapped FF phase
has no zero energy excitations. In both figures, αKF ¼ EF
and 1=asKF ¼ −0.1.
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is different from the topological FF phase where Weyl
nodes are the only gapless excitations. This phase should
also be distinguished from the gapless FF state because its
band structure has a certain topological property.
Topological FF phase.—The transition from the gapped

FF phase to topological FF phase is characterized by the
quasiparticle excitation gap that closes and reopens with
increasing hz for a fixed kz and a small hx. During this
transition, the minimum of the band gap Eg occurs at
kx ¼ ky ¼ 0, and the gap closes when

ðhx þ αQy=2Þ2 þ h2z ¼ ðℏ2k2z=2m − μÞ2 þ Δ2
0; (3)

which determines the position kW ¼ ð0; 0; kcÞ of the Weyl
nodes. Such gap close and reopening is shown in Fig. 3(a)
for kz ¼ 0. During this transition, the order parameter Δ0 is
still finite even though the bulk gap is closed. The finiteQy
indicates the FF superfluid. In Fig. 3(b), we plot the Weyl
nodes determined by Eq. (3) in the (kz, hz) plane. For a
fixed hz and hx, the superfluid is topological when Weyl
nodes exist at certain kz. There are two topological regions:

hz >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þΔ2

0− ðhxþαQy=2Þ2
q

with two Weyl nodes andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0− ðhxþ αQy=2Þ2
q

< hz <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þΔ2

0− ðhxþαQy=2Þ2
q

with four Weyl nodes. Both critical values for hz decrease

with increasing hx. To confirm such excitations are Weyl
fermions, we examine the energy dispersions around these
node points and find they are linear but with different
slopes along different directions [see Fig. 4(a)]. While the
different slopes between kz and in-plane directions are
due to the 2D SO coupling, the difference between the kx
and ky directions is caused by the finite momentum Qy of
the Cooper pairs induced by hx. From Eq. (3), we see the
properties of Weyl fermions, such as position (kc), number
(2 or 4), and their creation and annihilation, can be tuned
by varying hz and hx. Note that the anisotropy of Weyl
fermions can also be tuned by the external magnetic field in
solid materials (e.g., pyrochlore iridates [3]). In addition,
such Weyl fermions appear in pairs with opposite topo-
logical charges Nc ¼ �1 [48].
Weyl nodes can also be regarded as quantum Hall

transition points in the momentum space parametrized
by kz. In the topological FF phase, because the quasiparticle
excitations are gapped (except at the Weyl nodes) in the 2D
plane with a fixed kz, we can calculate the Chern number
for the hole branch for each kz plane

CðkzÞ ¼
1

2π

X
n

Z
dkxdkyΩnðkx; kyÞ; (4)

where n is the index for hole branches, and the Berry
curvature [50]

Ωn ¼ i
X
n0≠n

�hnj∂kxHBjn0ihn0j∂kyHBjni − ðkx↔kyÞ
ðEnk − En0kÞ2

�
; (5)

and n0, which is not equal to n, runs over the eigenstates of
HB. For the topological FF phase with two Weyl nodes, we
find that C ¼ 1 when jkzj < kc and C ¼ 0 when jkzj > kc
[see Fig. 3(c)]. For the topological FF phase with four Weyl
nodes,C ¼ 1when k lies between two nodes in the positive

FIG. 3 (color online). (a) The change of the quasiparticle
excitation gap Eg, Δ0, Qy, μ as a function of hz with
hx ¼ 0.2EF. (b) Gap closing points (Eg ¼ 0) in the (hz, kz)
plane for hx ¼ 0 (solid blue line), hx ¼ 0.1 (dashed red line), and
hx ¼ 0.2 (dashed-dotted green line). (c) Chern number for a fixed
kz plane. (d) Display of the density of states, which is calculated
via the iterative Green function method [49], ky ¼ 0. The light
blue region and the red line (Fermi arch) represent bulk and
surface excitations, respectively. In (c) and (d), hx ¼ 0.2EF,
hz ¼ 0.55EF. In all four figures αKF ¼ EF, 1=asKF ¼ −0.1.
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FIG. 4 (color online). (a) Quasiparticle excitations around
the Weyl node kW ¼ ð0; 0; 0.77KFÞ with hz ¼ 0.55EF and
hx ¼ 0.2EF. The inset gives the contours of energy with E ¼
0.1EF ( red line) and E ¼ −0.1EF (blue line). (b) Quasiparticle
excitation spectrum in the gapless topological FF phase as a
function of ky with fixed kz ¼ 0.8KF and confinement in the x
direction. Black lines are bulk states while the red lines
correspond to the surface state. hx ¼ 0.5EF and hz ¼ 0.2EF.
αKF ¼ EF, 1=asKF ¼ −0.1 for both (a) and (b).
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or negative kz, and C ¼ 0 otherwise. The Fermi surface lies
at zero energy, which is composed of separatedWeyl nodes.
It is expected that there exist chiral edge states [2,4] in the
presence of real space confinement along the x or y direc-
tion for a fixed kz with nonzero Chern number. For instance,
with the confinement along the x direction, there are two
chiral edge states whose spectra intersect at ky ¼ 0 and
E ¼ 0 (kz is already taken as a parameter). The zero energy
Fermi surface now becomes a line (i.e., Fermi arc) in the
(ky, kz) plane that connects two Weyl nodes [Fig. 3(d)].
Gapless topological FF phase.—Topological FF state is

gapless by itself, but the gapless points occur only when
particle and hole branches touch. With increasing hx, the
quasiparticle excitation spectrum becomes more asymmet-
ric along the ky direction. Above certain hx, certain parts of
the particle branch of the spectrum may fall below the zero
energy, leading to a gapless FF phase with Eg < 0. Note
that the band minimum of particle branch and maximum
of hole branch do not occur at the same k in this phase.
The gapless FF phase can be either nontopological or
topological, depending on whether the particle and hole
branches touch at certain kW ¼ ð0; 0; kcÞ with the linear
dispersion. Figure 2(b) displays the zero energy contours
in the (ky, kz) plane with kx ¼ 0 for different states. The
topological FF phase has separate zero points along the kz
axis, while other phases have closed loops. For the gapless
FF phase, the closed lines are connected. For the gapless
topological FF phase, the particle and hole branch can still
touch at certain kW . Instead of a single point, the zero
energy contour now cuts close loops in the (kx, ky) plane
and these loops are connected at kW . Away from kW along
the kz direction, particle-hole branches do not touch, and
the loops in the (kx, ky) plane are disconnected, which can
be clearly seen from the bulk spectrum in Fig. 4(b). In the
(ky, kz) plane with kx ¼ 0, it forms two connected loop
structures around kW , as shown in Fig. 2(b). To confirm
the topological nontrivial feature, we calculate the Chern
number of the two hole bands and find it is one between
two Weyl nodes and zero otherwise. Figure 4(b) shows the
edge state (red line) in the gapless topological FF phase.
Sound speed of FF superfluids.—The anisotropic Weyl

fermions in the topological FF phase have two characteristic
properties: (i) the anisotropic energy spectrumalong all three
directions. Furthermore, the spectrum is different even for
the �ky direction, which is special for the FF type of
superfluids. (ii) The energy gap closes above a critical hz
for the topological phase transition. In experiments, the finite
momentum pairing of the Cooper pairs may be measured
using noise-correlation imaging [51] or momentum-
resolved radio-frequency spectroscopy [35]. Here we
propose the above two characteristic properties of Weyl
fermions should manifest in the sound speeds of the under-
lying FF fermionic superfluids, which can be probed by
observing the propagationof a localizeddensity perturbation
created by a laser beam, as demonstrated in previous

experiments [52,53]. The sound speed can be obtained by
calculating Gaussian fluctuations around the saddle point
(Δ0, Qy) of the thermodynamical potential. Specifically,
the speed of sound along the η direction is defined as
vη ¼ jlimq→0∂ωðqÞ=∂qηj, where ωðqÞ is the bosonic gap-
less collective excitation spectrum [54] (see Supplemental
Material [55]). Around the Weyl nodes, where the quasi-
particle gap closes, we expect a sharp change of the sound
speed because of the strong fluctuations around the phase
transition points. In Fig. 5, we see the speeds of sound vi are
anisotropic along all three different directions, indicating
anisotropic quasiparticle spectrum. More interestingly, the
sound speeds along the positive and negative y directions are
also different, indicating asymmetric spectrum along the y
direction due to the finite momentum Cooper pairing. vi has
the minimum at the topological phase transition boundary
[see Fig. 2(a)] to the topological FF phase with Weyl
fermions. Therefore, we conclude that such anisotropic
speeds of sound and the minimum located at the phase tran-
sition boundary provide strong evidence ofWeyl fermions in
a FF superfluid. In experiments, we consider a typical para-
meterwith 40Katoms and densityn¼5×1012 cm−3, yielding
the Fermi energy EF ¼ h × 3.5 KHz and Fermi velocity
vF ¼ 8.3 mm=s. The SO coupling and Zeeman field can
be created by Raman coupling between atomic hyperfine
states. The strength of the Zeeman field may be tuned by
the detuning and intensity of Raman lasers [16–21,56].
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