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We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance,
where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov
states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two
topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for
manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom
densitycontrast across the soliton suddenlyvanishes, suggestinga signature for identifying topological solitons.
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Solitons, topological defects arising from the interplay
between the dispersion and nonlinearity of underlying
systems, are significant for many different physical
branches [1–4]. The realization of cold atomic superfluids
provides a clean and controllable platform for exploring
soliton physics. In cold atomic gases, dark solitons re-
present quantum excitations of a superfluid with the
superfluid order parameter vanishing at the soliton center
in conjunction with a phase jump across the soliton. Dark
solitons have been extensively investigated in cold atoms
[5–13]. In particular, dark solitons have recently been
experimentally observed in strongly interacting spin bal-
anced Fermi gases [14], where the Cooper pairing wave
function has a phase jump across the soliton [15–21].
However, dark solitons in the presence of a large spin
imbalance have not been well explored.
With a large spin imbalance, the ground state of the

superfluid is theoretically predicted to be the spatially
nonuniform Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase [22] with finite momentum pairing in 1D and
quasi-1D [23–28]. Such ground state structure has been
partially verified by the experiment [29]. However, this
spatially nonuniform phase does not support dark soliton
excitations that usually occur in BCS-type uniform super-
fluids. On the other hand, uniform superfluids can exist in
large spin imbalanced Fermi gases [30] in the presence of
spin-orbit (SO) coupling. Since SO coupling for cold atoms
has been experimentally generated recently for both bosons
and fermions [31–36], a natural question is whether such
SO-coupled superfluids with large spin imbalances can also
support dark solitons.
More interestingly, it is well known that defects (vorti-

ces, edges, etc.) in SO-coupled fermionic superfluids with
large spin imbalances can accommodate Majorana fer-
mions (MFs) [37–42], topological excitations that satisfy
exotic non-Abelian exchange statistics [43]. Recently, MFs

have attracted tremendous attention in various physical
systems [44] because of their fundamental importance as
well as potential applications in fault-tolerant quantum
computation [45]. In this context, SO-coupled fermionic
superfluids have their intrinsic advantages for MFs because
of their disorder-free [46] and highly controllable character-
istics. Therefore, another important question is whether
topological Majorana excitations can exist inside dark
solitons if such topological defects do exist.
In this Letter, we address these two important questions

by studying dark solitons in degenerate Fermi gases
(DFGs) trapped in 1D harmonic potentials with the
experimentally already realized SO coupling and spin
imbalances. Here the spin imbalance is equivalent to a
Zeeman field. In the absence of SO coupling, the FFLO
state [22] with an oscillating order parameter amplitude is
the ground state [24] with a large Zeeman field, which
cannot support dark solitons. With SO coupling, we find
(i) SO coupling suppresses the FFLO state, leading to
uniform BCS superfluids that support dark solitons.
The parameter region for dark solitons and their spatial
properties are obtained. (ii) For substantially large spin
imbalances, we find remarkably that two MFs can coexist
inside a dark soliton without any interaction, beyond the
general expectation that two MFs with overlapping wave
functions interact, leading to energy splitting that destroys
MFs. Such solitons are topological solitons to be distin-
guished from solitons without MFs. (iii) The experimental
signature of MFs inside the dark soliton in the local density
of states (LDOS) is characterized, which shows an isolated
zero energy peak at the center of the soliton. Moreover, the
density contrast across the soliton suddenly decreases to
zero at the topological transition point, which may be used
to experimentally detect topological solitons.
System and Hamiltonian.—Consider a SO-coupled DFG

confined in a 1D harmonic trap with the transversal
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confinement provided by a tightly focused optical dipole
trap. The many-body Hamiltonian of the system can be
written as

H¼
Z

dxΨ̂†ðxÞHsΨ̂ðxÞ−g
Z

dxΨ̂†
↑ðxÞΨ̂†

↓ðxÞΨ̂↓ðxÞΨ̂↑ðxÞ;
ð1Þ

where the single particle grand-canonical Hamiltonian
Hs ¼ −ℏ2∂2

x=2m − μþ VðxÞ þHSOC þHz, the harmonic
trapping potential VðxÞ ¼ mω2x2=2, μ is the chemical
potential, g is the attractive s-wave scattering interaction
strength between atoms that can be tuned through Feshbach
resonances, m is the atom mass, and ω is the trapping
frequency. Ψ̂ðxÞ ¼ ½Ψ̂↑ðxÞ; Ψ̂↓ðxÞ�T with the atom creation
(annihilation) operator Ψ̂†

νðxÞ [Ψ̂νðxÞ] at spin ν and position
x. We consider the equal Rashba and Dresselhaus SO
coupling HSOC ¼ −iℏα∂xσy, where σi are Pauli matrices.
The Zeeman fieldHz ¼ Vzσz generates the spin imbalance.
This type of SO coupling and Zeeman field has been
realized experimentally [31–36] for cold atom Fermi gases
using two counterpropagating Raman lasers that couple
two atomic hyperfine ground states (i.e., the spin).
Within the standard mean-field approximation, the fer-

mionic superfluids can be described by the Bogoliubov–de
Gennes (BDG) equation

�
Hs ΔðxÞ

ΔðxÞ� −σyH�
sσy

��
un
vn

�
¼ En

�
un
vn

�
; ð2Þ

where un¼½un↑ðxÞ;un↓ðxÞ�T , vn¼½vn↓ðxÞ;−vn↑ðxÞ� are the
Nambu spinor wave functions for the quasiparticle excitation
energy En, the order parameter ΔðxÞ ¼ −ghΨ̂↓ðxÞΨ̂↑ðxÞi ¼
−ðg=2ÞPjEnj<Ec

½un↑v�n↓fðEnÞ þ un↓v�n↑fð−EnÞ�, and the

atom density ρσðxÞ ¼ ð1=2ÞPjEnj<Ec
½junσj2fðEnÞþ

jvnσj2fð−EnÞ� with the energy cutoff Ec. fðEÞ ¼ 1=
ð1þ eE=kBTÞ is the quasiparticle Fermi-Dirac distribution
at the temperature T. With the constraints of a fixed
total number of atoms N ¼ R

dx½ρ↑ðxÞ þ ρ↓ðxÞ� and the
definition of the order parameter, Eq. (2) can be solved
self-consistently. To obtain a stationary soliton excitation in
the superfluid, we choose Δ tanhðx=ξÞ with coherent length
ξ ¼ ℏvF=Δ and Fermi velocity vF ¼ ℏKF=m as the initial
order parameter, and then solve the BDG equations self-
consistently until the order parameter and density converge.
To solve the BDG equation, we expand un and vn on the

basis states of the harmonic oscillator to convert the
equation to a diagonalization problem of a secular matrix.
We consider N ¼ 100 atoms with 300 harmonic oscillator
states for the wave-function expansion. The energy cutoff
Ec ¼ 240ℏω, which is large enough to ensure the accuracy
of the calculation [24]. We choose the single particle Fermi
energy EF ¼ Nℏω=2 (neglecting zero point energy) in the
absence of the SO coupling and Zeeman field and the

harmonic oscillator length xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
as the units of

energy and length. For 1D Fermi gases, the interaction
parameter g ¼ −2ℏ2=ma1D with an effective 1D scatter-
ing length a1D [29]. A dimensionless parameter Γ ¼
−mg=nð0Þℏ2 ¼ πxs=

ffiffiffiffi
N

p
a1D, which is proportional to

the ratio between the interaction and kinetic energy at
the center, can be used to characterize the interaction
strength [24]. Here nð0Þ is the density at the trap center
in Thomas-Fermi approximation. In experiments [29], this
value can be as large as 5.2. We choose Γ ¼ π in most of
our calculations.
Dark solitons in spin imbalanced DFGs.—In Fig. 1, we

plot the order parameter and density profiles for an
imbalanced SO-coupled Fermi gas with different interac-
tion strengths. With increasing interactions, both Δ and the
depth of the soliton increase while μ (not shown here)
decreases, signaling the crossover from BCS superfluids to
Bose-Einstein condensates (BECs) of molecule bound
states. Without SO coupling, the existence of a dark soliton
leads to the depletion (enhancement) of the spin ↑ (↓)
component even with small Zeeman fields; thus, the total
atom density only has a small depletion at the soliton center
as shown in the inset of Fig. 1(d). This is in sharp contrast to
Figs. 1(c) and 1(d) with the SO coupling, where a strong
depletion of the total density (also for each spin compo-
nent) in the dark soliton is observed. In Fig. 1(b), we

FIG. 1 (color online). Profiles of the order parameter Δ [(a) and
(b)] and the total density n [(c) and (d)] with increasing atom
interactions. In (b) and (d), the details of dark solitons in a small
region are plotted, where Δ and n are, respectively, scaled by Δa
and na, which are the asymptotic value to the origin point without
the soliton. In (c), lines corresponding to Γ ¼ 1.5π, π, 0.65π are
moved up 1.5xs, 3.0xs, 4.5xs with respect to the line for Γ ¼ 2.5π.
In the inset of (d), the density profiles (nσ for spin σ and
n ¼ n↑ þ n↓) for a gas with Γ ¼ π without SO coupling are
plotted. Here αkF ¼ EF and Vz ¼ 0.16EF.
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observe two length scales for the dark soliton. One is K−1
F

defined using the local density approximation, correspond-
ing to the steep slope and the oscillation wavelength. The
other is the coherence length, corresponding to the
smoother oscillation slope [16,47], which is about 5K−1

F ,
2.2K−1

F , 1.2K−1
F , K−1

F for Γ ¼ 0.65π, π, 1.5π, 2.5π, respec-
tively. These two scales are equivalent in the BEC limit,
where the oscillation structure of the soliton vanishes.
The physical mechanism for the dark soliton in an

imbalanced Fermi gas originates from the SO coupling
of atoms. Without SO coupling, the ground state of a 1D
imbalanced Fermi gas in a harmonic trap is predicted to
possess the two-shell structure: a partially polarized core
(i.e., FFLO state) surrounded by either a paired or a fully
polarized phase [24,28]. This two-shell structure has been
partially verified in the experiment [29]. With SO coupling,
the FFLO state is dramatically suppressed as shown in
Fig. 2(a) because the BCS-type of zero total momentum
Cooper pairing can be formed in the same helicity band,
which is energetically preferred than the FFLO state that is
formed through the pairing between atoms in two different
helicity bands [48,49] with nonzero total momentum. A
dark soliton can be created in the BCS-type of phases, but
not in the FFLO phase, where the stable state generated by
phase imprinting is also an oscillating FFLO state with a
sinusoidal-like form and has lower energy than a soliton
state. In this sense, SO coupling makes it possible to
generate a single dark soliton excitation with a high spin
imbalance.
Two MFs inside a dark soliton.—There are two topo-

logical superfluid (TS) phases in Fig. 2(a): a partial TS
(PTS) phase, where the superfluid has a phase separation
structure with a normal superfluid core surrounded by a
TS, and a TS phase, where the whole region is topological.
The phase separation in the PTS phase originates from
the harmonic trapping geometry, where the chemical
potential is replaced by a local one μ̄ðxÞ ¼ μ − VðxÞ using

the local density approximation. For a homogeneous gas,
superfluids become topological when Vz >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
[38,39] with Majarona zero modes located at the edges.
For a harmonically trapped gas, as the chemical potential
decreases from the trap center to edge, the condition
Vz >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̄2ðxÞ þ Δ2

p
[41] (See Supplemental Material

[50]) is first satisfied at the wings of the superfluids
(Vz <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
at the trap center) for the PTS phase.

This transition is characterized by the appearance of two
zero energy modes [cyan line and the red one hidden
behind the cyan in Fig. 2(b)] located around the place with
Vz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̄2 þ Δ2

p
, and the sharp decrease of the order

parameter in the topological region [Δ1 in Fig. 2(b)]. As
Vz is further increased with Vz >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
, the whole

superfluids become topological (TS phase) as the maxi-
mum of the order parameter (Δ0) drops suddenly. Without a
soliton, there is only one zero energy mode in the TS phase.
However, a soliton induces another zero energy mode. This
additional zero energy mode is different from conventional
local gapped excitations [blue and green lines in Fig. 2(b)]
that are similar to Andreev bound states in a vortex [16,47].
It appears only when the local superfluid, where the soliton
is located, becomes topological.
To confirm that the additional zero energy state is MFs

inside the soliton, we consider a linear combination of
the Bogoliubov quasiparticle operators γ0n for states
with En ∼ 0 (here E2 > E1 correspond to cyan and red
lines, respectively) to obtain spatially localized states:
γL ¼ ðγ0þ2 þ γ0þ1 þ γ0−2 þ γ0−1Þ=2, γR ¼ ðγ0þ2 − γ0þ1þ
γ0−2 − γ0−1Þ=2, γS1 ¼ ðγ0þ2 − γ0−2Þ=2i, and γS2 ¼
ðγ0þ1 − γ0−1Þ=2i. Because of the particle-hole symmetry
γ0n ¼ γ†0−n , we obtain γ

†
L ¼ γL, γ

†
R ¼ γR, and γ

†
Sσ ¼ γSσ with

σ ¼ 1; 2, indicating that γL, γR and γSσ, are self-Hermitian
Majorana operators. In Figs. 3(a) and 3(b), we plot the
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wave functions of MFs, showing the two MFs at the left

and right edges (two insets) and two MFs inside the
soliton [(a) and (b)]. The wave functions of MFs inside
the soliton behave like ∼ cosðπKFx=2Þ expð−x2=ξ20Þ and
∼ sinðπKFx=2Þ expð−x2=ξ20Þ, similar to Andreev bound
states [16] but with ξ0 larger than ξ. They are very different
from widely known MFs in vortices or nanowire ends
that interact due to the wave-function overlap, leading to
energy splitting that destroys the zero energy states. The
vanishing interaction between MFs inside the dark soliton
is due to the intrinsic property of a dark soliton: a sharp
phase change. We can understand this through Kitaev’s
toy model [51], and the interaction is proportional to
−iðt=2Þ cosðδϕ=2ÞγS1γS2 if written in the Majorana fermion
representation with the phase difference δϕ between two
sides of the soliton. For a dark soliton, δϕ ¼ π and there is
no interaction. Such a coexistence of two MFs inside a
soliton makes it possible to drag MFs to a new position
given that a dark soliton can be manipulated by means of
optical lattices [52].
Evolution of soliton structure.—The soliton structure can

be characterized by the density contrast Pσ ¼ ðnσmax −
nσminÞ=nσmax with the maximum nσmax and minimum nσmin
of the density for spin σ (Pt for the total density) in the
soliton region. In Fig. 4, we plot Pσ as a function of Vz. We
see both P↓ and Pt decrease, while P↑ is almost a constant
with increasing Vz before the appearance of MFs inside the
soliton in the TS region. However, the soliton structure
almost vanishes in the TS region with two MFs accom-
modating the soliton. The sudden decrease of the density
contrast at the topological transition point is mainly due to
the sharp decrease of the pairing order parameter, as shown
by Δ0 in Fig. 2(b), leading to the sudden decrease of the
number of atoms participating in the pairing around the

soliton. The sudden disappearance of the density contrast
across the dark soliton might provide an experimental
signature for the appearance of MFs inside the dark soliton.
From the insets, we see that the soliton density n↓ has a
convex structure for Vz > 0.53EF, where the density inside
the soliton is larger than its surroundings. The transition
to this convex structure leads to the kinks around Vz ¼
0.53EF observed in Fig. 2(b) and Fig. 4. This convex
structure of soliton density is caused by the local quasi-
particle excitations. In fact, without taking into account
of such quasiparticle contributions to the density, P↓ is
almost zero.
Experimental signature of topological solitons and

MFs.—In the right panel of Fig. 3, we present the local
density of states [24] of the Fermi gas, ρσðx; EÞ ¼P

jEnj<Ec
½junσj2δðE − EnÞ þ jvnσj2δðE þ EnÞ�=2 with

σ ¼ ↑;↓, which reflect the zero energy excitations at
the places where MFs are locally accommodated. Clearly,
in the TS region, the zero energy MF states appear at
x ¼ 0, where the dark soliton locates. In experiments, the
LDOS could be measured using spatially resolved radio-
frequency spectroscopy [53] with the space resolution
about 1.4 μm and spectral resolution about 0.5 kHz that
are smaller than the space resolution 5.4 μm and energy
resolution 3 kHz shown in Figs. 3(c) and 3(d) [29]. The
LDOS in a dark soliton in the trap center provides a
stronger and stabler signal than that at the edges with
small atom densities around MFs [41].
The 1D SO coupling and Zeeman fields considered here

have already been achieved for 40K and 6Li fermionic
atoms by coupling two hyperfine ground states using two
Raman laser beams in experiments [32,33,36]. In experi-
ment, the SO coupling and Zeeman field strength can be
tuned through varying the laser intensity or the setup of the
laser beams. The SO coupling can be as large as αKF ∼ EF
and a Zeeman field can be readily tuned to Vz ∼ EF. The
realization of 1D Fermi gases and the dark soliton can be
similar as that in recent experiments [14], where an
elongated 1D Fermi gas is confined in a harmonic trap
with cylindrical symmetry (radial trapping frequency much
larger than the axial one) using a combination of the weak
magnetic trap (axial) and tightly focused optical trap
(radial). Dark solitons can be experimentally created via
phase imprinting [11,12,14], where a half of the cloud is
shortly interacted with a laser beam to acquire the phase
difference.
Discussion.—The mean-field BDG theory used here may

give a qualitative description of the 1D physics. In
particular, for 1D Fermi gases with weak and moderate
interactions, the energy and chemical potential obtained
from mean-field theory and exact Bethe ansatz were
compared [24] and only a small discrepancy was found.
Moreover, the fluctuations could be suppressed in an
experimentally trapped Fermi gas, where the density of
states is a constant, similar to homogenous 2D systems
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[24]. For a SO-coupled Fermi gas, recent comparison
between the mean-field phase diagram and the exact 1D
density matrix renormalization group simulation shows the
qualitative correctness of the mean-field approximation
[54]. Furthermore, quasi-1D Fermi gases can be engineered
via an externally imposed strong optical lattice in experi-
ments [29] and the weak tunneling [25,27,55] along
transverse directions can be tuned to suppress the fluctua-
tions. For solitons in highly elongated DFGs, the exper-
imentally observed long period of the soliton oscillation
was found to be in good agreement with the hydrodynamic
theory [14], which is an approximation of the mean-
field BDG approach. Our work provides the first step
approach to understand the fundamental soliton physics in
this system, and more quantitative results need further
investigation.
To conclude, we showed that a single dark soliton

excitation can exist in an imbalanced DFG with SO
coupling, in sharp contrast to the FFLO state without
SO coupling. With a substantial spin imbalance, we found
that two MFs can coexist inside one single dark soliton
without interactions, which provides a new avenue for
experimentally observing and manipulating MFs by con-
trolling solitons as well as creating Majorana trains by
engineering soliton trains [56].
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