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We demonstrate that a Weyl point, widely examined in 3DWeyl semimetals and superfluids, can develop
a pair of nondegenerate gapless spheres. Such a bouquet of two spheres is characterized by three distinct
topological invariants of manifolds with full energy gaps, i.e., the Chern number of a 0D point inside one
developed sphere, the winding number of a 1D loop around the original Weyl point, and the Chern number
of a 2D surface enclosing the whole bouquet. We show that such structured Weyl points can be realized in
the superfluid quasiparticle spectrum of a 3D degenerate Fermi gas subject to spin-orbit couplings and
Zeeman fields, which supports Fulde-Ferrell superfluids as the ground state.
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Weyl fermions [1] were initially conceived to describe
neutrinos in particle physics. Although neutrinos may have
mass, the standard model of particle physics permits the
existence of such chiral fermions in quarks and leptons [2].
Recently, Weyl fermions have been widely examined in a
class of solid-state materials dubbed Weyl semimetals
[3–15]. Remarkably, these semimetals can be described
by a Weyl Hamiltonian near their unusual Weyl points,
where two linearly dispersed bands cross. Impressively, such
Weyl points have been experimentally observed in a
photonic crystal [16] and a Weyl semimetal TaAs [17,18].
A Weyl point can also be regarded as a monopole in 3D
momentum space that exhibits an integer topological charge,
i.e., the quantized first Chern number of a surface enclosing
the singularity. Weyl points were also suggested to exist in
the quasiparticle spectrum of superfluid 3He A phase [2]. In
contrast to traditional fully gapped superfluids, the Weyl
superfluids bear doubly degenerate nodes pinned to zero
energy, around which the quasiparticle energies disperse
linearly in all directions. Most recently, the existence of such
Weyl nodes has also been generalized to various cold-atom
superfluids and solid-state superconductors [19–28].
In this Letter, we investigate whether a Weyl point can

develop a nontrivial structure at zero energy and whether a
topological property protecting the developed structure
exists. (i) We first consider a toy model to examine the
possibility for a Weyl point to develop a gapless structure.
Mathematically, the structured Weyl point can be viewed as
a bouquet of two spheres (or wedge of two spheres) [29],
which is a new class of topological state that has not been
explored previously. Amazingly, the zero-energy bouquet
is characterized by three distinct topological invariants: the
first Chern number of a surface enclosing the whole
bouquet, the zeroth Chern numbers of the interiors of
the two spheres, and the winding number of a loop
enclosing the touching point in the plane of symmetry.
(ii) We further show that the structured Weyl points can be
physically realized in the quasiparticle excitation spectrum

of a 3D spin-orbit coupled (SOC) fermionic cold-atom
superfluid with the Fulde-Ferrell (FF) ground state. FF
superfluids [30–41] have been studied recently in SOC
degenerate Fermi gases subject to Zeeman fields, which
yield asymmetries of the Fermi surface and induce the FF
Cooper pairing with nonzero total momenta. We obtain a
rich phase diagram in the gapless region of 3D FF super-
fluids, where not only the featureless Weyl points [19–28]
but also the structured Weyl points emerge. Note that the
featureless Weyl points have been well studied in SOC FF
superfluids [24], and here we focus only on the novel
structured Weyl points. (iii) We also discuss how the
structured Weyl points can be detected in experiments
by measuring spectral densities in photoemission spectros-
copy that has already been utilized in degenerate Fermi
gases [42].
Toy model of structured Weyl point.—Near the Weyl

point a Weyl semimetal or superfluid can be described by
Weyl Hamiltonian HW ¼ �P

i¼x;y;z vikiσi, where σi are
Pauli matrices and � denote the chirality. Clearly, the two
bands disperse linearly and cross only at the Weyl point at
the zero energy. Hereafter we will focus on the positive
chirality and choose vi ¼ 1 for simplicity. The topological
charge of the Weyl point can be characterized by the first
Chern number

C2 ¼
1

2π

X
En<0

I
S
ΩnðkÞ · dS; ð1Þ

where the surface S only encloses the considered Weyl
point, and ΩnðkÞ ¼ ih∇kunðkÞj × j∇kunðkÞi is the Berry
curvature [43] for the nth band with junðkÞi being its wave
function. For the linearized two-band model, Ω∓ðkÞ ¼
�k=2k3 and ∓ label the eigenvalue of

P
ikiσi=k, i.e., the

helicity, as depicted in Fig. 1(a). This yields C2 ¼ 1 for
Weyl points with positive chirality.
To generate a structured Weyl point, we add two new

momentum dependent terms in HW such that

PRL 115, 265304 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

0031-9007=15=115(26)=265304(6) 265304-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.265304
http://dx.doi.org/10.1103/PhysRevLett.115.265304
http://dx.doi.org/10.1103/PhysRevLett.115.265304
http://dx.doi.org/10.1103/PhysRevLett.115.265304


HW ¼ −αkyσ0 þ ðky þ γk3yÞσy þ kxσx þ kzσz; ð2Þ

with α, γ > 0. The first term that breaks the chiral
symmetry along y is −αkyσ0, which does not change the
eigenstates and their helicities, leaving the Berry curvatures
invariant. However, this term does change the band
energies E∓. With increasing α, the two bands along the
ky axis rotate clockwise. When α > 1, the particle and hole
portions are inverted for the band with positive velocity, as
shown in Fig. 1(b). Since the helicity þ and − bands are
both occupied at the same momentum and their Berry
curvatures are opposite, their contributions to C2 become
vanishing. In Figs. 1(d) and 1(e), we plot the distribution of
the occupied-band helicities in the kx ¼ 0 plane. For α > 1,
bothþ and − bands are occupied in the yellow region when
ky >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2zÞ=ðα2 − 1Þ

p
, whereas no band is occupied

in the mirror reflected red region. This is in sharp contrast
to the case for α < 1, where only the − band is occupied
beyond the Weyl point. Evidently, C2 is suppressed and not
quantized for α > 1, which is anomalous.
To restore a quantized C2, we add the cubic term to

regularize HW . It follows that the band energies become

E� ¼ −αky � E0 with E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ γk3yÞ2 þ k2x þ k2z

q
, and

that the Berry curvatures read Ω∓;x ¼ �kxð1þ 3γk2yÞ=2E3
0,

Ω∓;y¼�kyð1þγk2yÞ=2E3
0, and Ω∓;z¼�kzð1þ3γk2yÞ=2E3

0.
At large ky the cubic term changes faster than the linear
terms, resulting in a finite zero-energy surface, as sketched
in Figs. 1(c) and 1(f), instead of an infinite cone structure.
This suggests that a Weyl point can develop a pair of
nondegenerate gapless spheres, i.e., a bouquet of two
spheres. We further obtain C2 ¼ 1, as long as the surface
S in Eq. (1) encloses the whole bouquet.
Apart from the first Chern number C2, intriguingly, there

exist two additional topological invariants characterizing

the whole bouquet. In the ky ¼ 0 plane, there is a chiral
symmetry σyHWσy ¼ −HW and thus in general HW
can be transformed into an off-diagonal block form
ff0; hðkÞg; fhðkÞ†; 0gg with a winding number defined as

C1 ¼ −
1

2πi

I
L
Tr½hðkÞ−1dhðkÞ� ∈ Z; ð3Þ

for a loop L around the band crossing node [44–46]. Direct
calculation yields C1 ¼ 1 in our case, and the correspond-
ing Berry phase is π. Moreover, the whole bouquet divides
the momentum space into three regions with full energy
gaps. Any point P in these regions is characterized by its
zeroth Chern number [44], which reads

C0 ¼
1

2

�X
En<0

hunðPÞjunðPÞi −
X
En>0

hunðPÞjunðPÞi
�
: ð4Þ

C0 amounts to half of the number difference between the
occupied and unoccupied bands since the 0D manifold is
featureless in momentum.We find that in the interiorC0¼1
(C0 ¼ −1) for ky > 0 (ky < 0) whereas in the exterior
C0 ¼ 0. Therefore, the whole bouquet can be characterized
by (C0, C1, C2).
Realization in 3D FF superfluids.—The toy model,

Eq. (2), may be applied to describe the band structures
of solid-state materials or the quasiparticle spectra in
superfluids or superconductors. Here we explore the latter
possibility in realizing the structured Weyl points in a 3D
SOC degenerate Fermi gas subject to Zeeman fields, where
the dominant ground state phase is the FF superfluid
[30–34].
We consider a 3D Fermi gas with a Rashba SOC

and an attractive s-wave contact interaction. Based on
a standard mean-field approximation [33], the thermody-
namical potential is Ω ¼ jΔ0j2=U þP

k ðεk−Q=2 − μÞ−P
k;σð2βÞ−1 lnð1þ e−βEkσÞ. Here U is the interaction

strength [47], β ¼ 1=kBT is the inverse of temperature,
εk ¼ ℏ2k2=2m is the kinetic energy, μ is the chemical
potential,Q is the finite momentum of Cooper pairs with an
FF order strength Δ0, and Ekσ are the eigenenergies of the
Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG ¼ ½εk − μ̄þ λðσ × kÞ · ẑ�τz þ Δ0τx

þ h̄xσx þ hzσz þ ℏ2kyQy=2m; ð5Þ
with μ̄ ¼ μ −Q2

yℏ2=8m and h̄x ¼ hx þ λQy=2. In Eq. (5),
the Pauli matrices σ and τ act on the spin and the Nambu
spaces, hx and hz are the in-plane and the out-of-plane
Zeeman fields, λ is the SOC strength, and the basis is
chosen as ðckþQ=2↑; ckþQ=2↓; c

†
−kþQ=2↓;−c

†
−kþQ=2↑ÞT with

Q ¼ Qyŷ [30,48]. To obtain the self-consistent mean-field
solutions of Δ0, Qy, and μ, we solve the nonlinear saddle
point equations ∂Ω=∂Δ0 ¼ 0 and ∂Ω=∂Qy ¼ 0, and the

FIG. 1 (color online). The energy dispersions of HW along ky
(kx ¼ kz ¼ 0) for ðα; γÞ ¼ ð0; 0Þ in (a), (2,0) in (b), and (2,1) in
(c). (d)–(f) plot the distributions of the negative-energy bands in
the kx ¼ 0 plane, corresponding to (a)–(c), respectively. The
states at the green dots and lines have zero energies. � represent
the band helicities.
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atom number equation ∂Ω=∂μ ¼ −n with a conserved total
atom density n.
To shed light on how the Weyl nodes emerge and evolve

in the BdG spectrum, we first analyze the symmetries of
the physical system beyond the intrinsic particle-hole
symmetry (Ξ ¼ σyτyK with K the complex conjugation).
When hx;z ¼ 0, the time-reversal symmetry (Θ ¼ σyK) is
present, and the mirror symmetries (Mν ¼ −iσν, ν ¼ x; y)
are also unbroken by the SOC or the pairing, i.e.,
M−1

ν HBdGMν ¼ HBdGð−kνÞ. When the Zeeman fields
hx;z are turned on, the time-reversal and the two mirror
symmetries are broken explicitly, since there are terms in
the second line of Eq. (5) which are odd under their
individual operations. Yet, these terms are still even under
the product operations of Θ and My. Therefore, indepen-
dent of the presence of Zeeman fields, Π ¼ ΞΘMy ¼
iσyτy is an effective symmetry of the system, i.e.,
Π−1HBdGΠ ¼ −HBdGð−kyÞ. Similarly, without hx fields
(thus Qy ¼ 0), M ¼ ΘMx is an extra symmetry, because
of M−1HBdGM ¼ HBdGð−ky;�kzÞ [considering the
intrinsic symmetry HBdG ¼ HBdGð−kzÞ].
The hx Zeeman field is critical for the presence of

structured Weyl points. When hx ¼ 0, the two symmetries,
Π and M, dictate that any zero-energy state of a dispersed
band must have a zero-energy partner state at the same
momentum. This indicates that a doubly degenerate Weyl
node can exist whereas a nondegenerate state cannot stay at
the zero energy. When hx ≠ 0, the M symmetry is broken,
and the double degeneracy for gapless states is only
dictated in the ky ¼ 0 plane. Indeed, we find that in the
phase diagram two or four Weyl nodes can appear in this
plane, and each can evolve into a band crossing node with a
nondegenerate gapless surface structure developed on each
side of the plane. For Eq. (5), a pair of band crossing nodes
appears when h2z > μ̄2 þ Δ2

0 − h̄2x, and two pairs appear
when Δ2

0 − h̄2x < h2z < μ̄2 þ Δ2
0 − h̄2x and μ̄ > 0. We map

out the zero-temperature phase diagram across the BCS-
BEC crossover as a function of hz in Fig. 2(a) and a
function of hx in Fig. 2(b). The FF superfluids of finite-
momentum Cooper pairs are dominant except in a region
deep into the BEC side. In sharp contrast to the superfluids
without the hx field where only Weyl points can exist, these
superfluids can also possess structured Weyl points, as
plotted in Fig. 2(c).
As discussed in the toy model, a structured Weyl node

can be characterized by three independent topological
invariants (C0, C1, C2). We find that C2 ¼ −1 (C2 ¼ 1)
for a closed surface enclosing the whole bouquet at kz > 0
(kz < 0). This reflects that the gapless bouquet originates
from a Weyl node. Furthermore, in the ky ¼ 0 plane, there
is a chiral symmetry Π−1HBdGΠ ¼ −HBdG, and based on
Eq. (3) the winding number C1 ¼ 1 and the corresponding
Berry phase is π. Intriguingly, for each bouquet, the
nondegenerate gapless surface separates the momentum
space into three topologically distinct regions with different

C0 indices. In the exterior C0 ¼ 0 whereas in the interior
C0 ¼ 1 (C0 ¼ −1) on the ky > 0 (ky < 0) sides. This result
is consistent with the Π symmetry that relates the positive
and negative energy bands at opposite ky. Evidently, a whole
bouquet has topological invariants (�1, �1, �1). As we
have observed, all these unique features of the structured
Weyl node have been exhibited in our toy model, Eq. (2).
As the interaction strength or the Zeeman field strength

changes, the gapless spheres of different bouquets can even
connect and merge together as long as their C0 indices are
the same. An example of such a connected bouquet (i.e.,
CSWP phase) is shown in Fig. 2(d). The two bouquets have
opposite C2 indices before their merging, and hence any

FIG. 2 (color online). Phase diagrams across the BCS-BEC
crossover for hx ¼ 0.5EF in (a) and for hz ¼ 0.4EF in (b). The
inset [49] enlarges the black rectangular area. Zero-energy
contours for a pair of SWPs in (c) and for a CSWP in (d). (e)
and (f) sketch the evolutions of the zero-energy contours in the
kx ¼ 0 plane along the arrows above and below the multicritical
point (the white point). (g) and (h) show the spin-down
quasiparticle spectral densities in the kx ¼ 0 plane for (c) and
(d). The Fermi energy EF is ℏ2K2

F=2m with KF ¼ ð3π2nÞ1=3.
WP2: two Weyl points; WP4: four Weyl points; SWP: structured
Weyl point; CSWP: connected structured Weyl points; DS: dis-
connected spheres; NS: normal superfluids with Qy < 10−4KF;
NG: normal gases. Here λKF ¼ EF.
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surface enclosing the whole connected bouquet has C2 ¼ 0
after merging. Yet, the winding number C1 of any loop
enclosing either band crossing node in the ky ¼ 0 plane as
well as the zeroth Chern number C0 are still intact. Thus, a
connected bouquet has topological invariants (�1, �1, 0).
There exists a multicritical point (the white point) in

Fig. 2(b) where five distinct phases intersect and the gap
closes at k ¼ 0. Increasing 1=asKF for a fixed hz above
and below the multicritical point represents two different
processes of destroying the phase with a connected bou-
quet. For the larger hx, as the interaction increases, the two
band crossing nodes of the connected bouquet move toward
each other along k̂z and then pair-annihilate, leading to a
gapless FF phase with two disconnected spheres (i.e., DS
phase in Fig. 2) located at two sides of the ky ¼ 0 plane. As
the interaction further increases, the spheres shrink and
eventually disappear, yielding a gapped FF superfluid. This
process is sketched in Fig. 2(e). The other process for the
smaller hx is sketched in Fig. 2(f). As the interaction
increases, the connected bouquet is first broken down into a
pair of disconnected bouquets, then each shrinks into a
Weyl node, and eventually the two Weyl nodes pari-
annihilate at k ¼ 0 producing a gapped FF superfluid.
Intriguingly, each gapless phase has at least one topological
invariant.
Structured Weyl ring.—Given the existence of structured

Weyl points, one may wonder whether there exist struc-
tured Weyl rings in 3D. We can construct a simple model to
describe such a ring: HWR ¼ −αkyσ0 þ ðky þ γk3yÞσy þ
ðk2 −m2Þσz with nonzero m. Analogous to structured
Weyl points, when α > 1 and γ > 0, the zero-energy
contour is a structured Weyl ring; i.e., a bouquet of two
circles travels along a loop as shown in Fig. 3(a). Although
the first Chern number C2 for a surface enclosing the whole
ring is zero, the Berry phase along the loop trajectory
enclosing the ring is γ ¼ π [50] and the zeroth Chern
numbers C0 of the gapped interiors are quantized to �1.
Such a structured Weyl ring can indeed be realized in the
quasiparticle spectrum of SOC FF superfluids, with equal
Rashba and Dresselhaus SOC, i.e., the model, Eq. (5),
with the Rashba SOC replaced by HSOCðp̂Þ ¼ λp̂yσx [51].

Here Π symmetry and rotational symmetry with respect
to ky [HBdG ¼ HBdGðk2x þ k2z ; kyÞ] dictate that crossing
rings can exist in the ky ¼ 0 plane. Indeed, in this plane
for FF superfluids with a hx field, a ring appears when
h2z > μ̄2 þ Δ2

0 − h̄2x, and two rings appear when Δ2
0 − h̄2x <

h2z < μ̄2 þ Δ2
0 − h̄2x and μ̄ > 0. Similar to the case for

structured Weyl points, M symmetry is broken by hx
fields so that the Weyl ring can develop structures on both
sides of the ky ¼ 0 plane, as shown in Fig. 3(a). The
developed gapless contours can further bend toward kx ¼
kz ¼ 0 and become closed, as shown in Fig. 3(b). It follows
that then only C0 is responsible for the protection of the
zero-energy structures.
Experimental observation.—To observe the structured

Weyl nodes or rings, we consider the quasiparticle spectral
density Aσðω; kÞ ¼ −ImGσσðiω ¼ ωþ iδ; kÞ=π, where
G ¼ ðiω −HBdGÞ−1 is the Green function. Aσðω; kÞ can
be experimentally measured using the spin and momentum
resolved photoemission spectroscopy [42]. To evaluate the
zero-energy spectral density, we compute A↓ðω ¼ 0; kÞ in
the kx ¼ 0 plane, which is illustrated in Figs. 2(g) and 2(h)
for a pair of structured Weyl nodes. The signal of
A↑ðω ¼ 0; kÞ is similar, though it has a weaker amplitude
due to the smaller particle density. For a structured Weyl
ring, the signal of Aσ in the kx ¼ 0 plane is similar to that of
the structured Weyl node, but exhibits a ring structure in the
ky ¼ 0 plane instead of two points for a pair of structured
Weyl nodes. We note that a structured Weyl node or ring
also has an interesting surface spectral density [25]. In
experiments, SOC and Zeeman fields have been recently
realized [52–60] in 40K and 6Li fermionic atoms by
coupling two hyperfine states via counterpropagating
Raman laser beams. The SOC strength is determined by
the wavelength lr of the Raman beams and their relative
angle θ by λKF ¼ 2(kr sinðθ=2Þ=KF)EF with kr ¼ 2π=lr.
This strength can be as large as λKF ¼ 2EF when we
consider a typical set of parameters: lr ¼ 773 nm and
n ¼ 1.8 × 1013cm−3 [53]. The Zeeman fields, depending
on the laser beam strength or the detuning, can also be
readily tuned to EF. These parameters are large enough to
observe the exotic Weyl phases discovered here. We note
that in a harmonic trap, the quasiparticle spectrum around
the center of the trap can be measured using spatially
resolved photoemission spectroscopy assisted by hollow
light technology [61].
In summary, we demonstrate that a Weyl point in

semimetals or nodal superfluids can deform into a bouquet
of two spheres. We show that such a structured Weyl point
is characterized by three distinct topological invariants and
can be realized in SOC Fermi gases subject to Zeeman
fields. Such nontrivial structured Weyl points have not been
discussed previously in 3He or other topological super-
conductors or superfluids. Our discovery introduces a new
class of topological quantum matter and may have great
impact in both cold-atom and solid-state communities.

FIG. 3 (color online). (a) Zero-energy contours of a structured
Weyl ring (SWR). The inset shows the cross section of a SWR.
(b) A closed SWR (CSWR). Only kx > 0 part is plotted; the
kx < 0 part is symmetric to the kx > 0 part with respect to the
kx ¼ 0 plane. Here λKF ¼ EF.
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Note added.—Recently, we noticed two newly posted
preprints [62,63] on a new type of Weyl point and its
realization in the single particle band dispersion of certain
solid materials (e.g., WTe2 and MoTe2), where the Weyl
Hamiltonian around the Weyl point is similar to our toy
Hamiltonian Eq. (2) with only linear terms considered.
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