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Spin-imbalanced ultracold Fermi gases have been widely studied recently as a platform for exploring the
long-sought Fulde-Ferrell-Larkin-Ovchinnikov superfluid phases, but so far conclusive evidence has not
been found. Here we propose to realize an Fulde-Ferrell (FF) superfluid without spin imbalance in a three-
dimensional fermionic cold atom optical lattice, where s- and p-orbital bands of the lattice are coupled by
another weak moving optical lattice. Such coupling leads to a spin-independent asymmetric Fermi surface,
which, together with the s-wave scattering interaction between two spins, yields an FF type of superfluid
pairing. Unlike traditional schemes, our proposal does not rely on the spin imbalance (or an equivalent
Zeeman field) to induce the Fermi surface mismatch and provides a completely new route for realizing FF
superfluids.
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The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state,
characterized by Cooper pairs with finite center-of-mass
momenta [1,2] is a central concept for understanding many
exotic phenomena in different physics branches [3]. A
crucial ingredient for realizing FFLO states is a large
Zeeman field that induces a Fermi surface mismatch of
two paired spins [1,2]. In recent years, FFLO states have
been extensively studied in ultracold Fermi gases, where the
population imbalance between two atomic internal states
(pseudospins) serves as an effective Zeeman field [4–14].
Despite the intrinsic advantages of cold atoms compared to
their solid state counterparts, conclusive evidence of FFLO
states has not been found yet because of various obstacles.
For instance, a large Zeeman field suppresses the superfluid
order parameter, leading to a very narrow parameter region
for FFLO states in 2D or 3D which can be easily destroyed
by thermodynamic fluctuations [4–6]. In 1D, the parameter
region for FFLO states could be large, but the quantum
fluctuation is strong [7,12,14]. The recently proposed
schemes using spin-orbit coupling and in-plane Zeeman
field in a 3D Fermi gas may potentially overcome these
obstacles [15–21] in principle, but they face practical
experimental issues such as the large spontaneous photon
emission from the near-resonant Raman lasers [22–31] and
the strong three-body loss at Feshbach resonance in the
presence of spin-orbit coupling [23–26].
In this Letter, we propose a new route for realizing FF

superfluids in ultracold Fermi gases without involving
population imbalance of two spin states that interact for
generating Cooper pairing. Instead, we induce an asym-
metric Fermi surface for the generation of FF states by other
means and the populations of the two spins are fully equal.
Our main results are the following: (1) We show that the
s- and px-orbital bands of a 3D static optical lattice can be

coupled using a weak 1D moving optical lattice along the
x direction, which can be generated by two counterpropa-
gating lasers with the frequency difference matching the
s-px band gap. The s and px bands can be denoted as the
band pseudospin, and the moving lattice induces a band-
pseudospin-momentum (i.e., spin-orbit) coupling and an
in-plane Zeeman field, which yield an asymmetric Fermi
surface along the x direction. The realization of such band-
pseudospin-momentum coupling may provide a new plat-
form for exploring exotic spin-orbit coupling physics.
(2) We show that the asymmetric Fermi surface, together
with the s-wave pairing interaction between two equally
populated hyperfine spin states, can induce an FF type of
Cooper pairing within a large parameter region in the 3D
optical lattice, in sharp contrast to the narrow parameter
region for the spin-imbalanced Fermi gas [6,7]. Because of
the 3D nature of the FF superfluids, the quantum fluctua-
tions are also suppressed. The generated FF state is
thermodynamically much more stable than the spin-
imbalanced Fermi gas. Compared to the spin-orbit coupled
schemes [15–21] that require near resonant Raman lasers
[23–31], all lasers used here are far detuned; therefore, the
proposed scheme should work for all types of fermionic
atoms, including 6Li [14]. Furthermore, because the hyper-
fine spins are not coupled with the momentum, the s-wave
scattering interaction should be the same as regular Fermi
gases without significant three-body loss at Feshbach
resonance. These intrinsic advantages of our spin-balanced
scheme make it experimentally more feasible than the spin-
imbalanced schemes (with [4–14] or without spin-orbit
coupling [15–21]), and thus may open a new route for
observing FF superfluids.
Asymmetric Fermi surface in a driven optical lattice.—

Consider a degenerate spin-1=2 Fermi gas trapped in a
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static 3D optical lattice. Our proposed experimental setup is
illustrated in Fig. 1(a). An additional 1D moving lattice
along the x direction is applied to couple the s- and px-
orbital bands of the static lattice. The moving lattice is
generated by two counterpropagating lasers with a fre-
quency difference of ω that matches the s-px band gap,
resulting in a two-photon Raman coupling between these
two bands. All lasers are far detuned to avoid heating from
spontaneous emission. The overall time-dependent lattice
potential can be written as

Vðr; tÞ ¼
X

η¼x;y;z

V0cos2ðkLηÞ þ V 0
xcos2

�
kLxþ

ωt
2

�
; ð1Þ

where V0 and V 0
x are the static and moving lattice depths,

kL ¼ π=a with the lattice constant a.
We consider a large static lattice V0, but a weak moving

lattice V 0
x (i.e., V 0

x ≪ V0); therefore, only on-site and
nearest-neighbor tunnelings need be considered and the
total wave function jΨi can be expanded in terms of the
static lattice Wannier functions jΨi¼P

j csjjsjiþcpxjjpj
xi,

where j is the site index in the x direction. jsji and jpj
xi are

the s-band and px-band Wannier functions at the jth lattice
site, csj and cpxj are their annihilation operators, respec-
tively. Along the other two directions, the p band is not
coupled and only the s band is considered and their related
indices are neglected here for simplicity.
Under the Wannier basis, we can derive the single-

particle tight-binding Hamiltonian, where the time

dependence in the coupling between different orbits could
be further eliminated using the rotating wave approxima-
tion [32], similar to the well-known two level Rabi
oscillation. The difference from the Rabi oscillation is that
the two levels here (s and px bands) have different band
dispersions. Physically, there are three types of possible
couplings between s and px bands, as illustrated in Fig. 1(a),
with the coupling strengths given by Ω ¼ ðV 0

x=4Þ×
hsij sinð2kLxÞjpi

xi, α ¼ ðV0
x=2Þhsij cosð2kLxÞjpiþ1

x i, and
β ¼ ðV 0

x=2Þhsij sinð2kLxÞjpiþ1
x i. The first term Ω denotes

the coupling of two orbital states at the same site, while the
last two terms α and β are the couplings between nearest-
neighbor sites [33]. The values of Ω, α, and β calculated
from the Wannier functions are plotted in Fig. 1(b) (see also
Fig. S1 [32]). β is usually small and not important for the
physics discussed here.
The resulting time-independent single-particle

Hamiltonian in the momentum space can be written as

H0ðkÞ ¼
�
ϵsðkÞ þ h ΠðkxÞ
ΠðkxÞ ϵpðkÞ − h

�
ð2Þ

under the basis (csðkÞ; cpx
ðkÞ)T , where ΠðkxÞ ¼

Ω − α sinðkxaÞ þ β cosðkxaÞ, ϵsðkÞ ¼ −2ts½cosðkxaÞ þ
cosðkyaÞ þ cosðkzaÞ� − μ, and ϵpðkÞ ¼ 2tp cosðkxaÞ −
2ts½cosðkyaÞ þ cosðkzaÞ� − μ:ts and tp are the nearest-
neighbor tunneling amplitudes for atoms in the s- and
px-orbital states, respectively. 2h is the energy difference
between ω and the band gapΔg. μ is the chemical potential.
Note that α sinðkxaÞσx corresponds to the band-pseudo-
spin-momentum coupling.
In the absence of α, H0ð−kÞ ¼ H0ðkÞ, revealing that the

single-particle Hamiltonian is symmetric under inversion
transformation. This inversion symmetry is broken when α
andΩcoexist.A typical single-particleband structure,which
is asymmetric along the kx axis, is shown in Fig. 1(c). Here,
we just show the Fermi surface in the ky;z ¼ 0 plane. The
Fermi surface is still symmetric along ky and kz directions.
The orbital and hyperfine-spin degrees of freedom of the
atoms are independent; therefore, the coupling between
different orbital states does not break the spin degeneracy
and the hybrid bands are spin balanced at any k point.
Pairing Hamiltonian.—Consider a spin-1=2 Fermi gas

with equal spin populations loaded on such an asymmetric
orbital band. The dominant on-site atom-atom interaction
between opposite spins can be made attractive via Feshbach
resonance, similar as regular two component Fermi gases
[34]. As a good approximation, the on-site atom-atom
interaction can take the same form as the time-independent
static system [32]. In the momentum space, the inter- and
intraband interaction term can be written as Hint ¼
−
P

μνgμνc
†
↓μðk1Þc†↑νðk2Þc↑νðk3Þc↓μðk4Þ, where k1 þ k2 ¼

k3 þ k4 due to the momentum conservation for the two-
body scattering process. μ and ν denote the orbital states of
two spins. gμν ¼ g

R
dxjwμðxÞj2jwνðxÞj2 is the interaction

FIG. 1. (a) An illustration of the experimental proposal: a
moving lattice (orange arrows) induces effective two-photon
Raman couplings between s and px bands of a 3D static optical
lattice (only show 2D here, gray arrows). (b) Plot of different
coupling strengths Ω, α, and β as a function of the static lattice
depth V0. The moving lattice depth V 0

x ¼ 0.8ER with the recoil
energy ER ¼ h2=2ma2. (c) The single-particle band structure for
V0 ¼ 3.0ER. h ¼ 5.5ts and μ ¼ 3ts with ts ¼ 0.111ER. The
colors represent hybrid orbital compositions for each momentum
state (red for s- and blue for px-orbital states). Dashed lines: bare
s- and shifted px-orbital bands without coupling.
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coefficient for two atoms in two orbital states (labeled by μ
and ν), and g is the two-body interaction strength in free
space. To compare the strengths of the interactions between
two orbital states, we approximate the lattice potential
at each site by a harmonic trap, which is a good approxi-
mation when the static lattice is not very weak. The
relative ratio of the interaction strength is found to be
gss∶gsp∶gps∶gpp ¼ 1∶0.5∶0.5∶0.75 [32]. Hereafter, we
denote gss ¼ U.
Under the mean-field approximation, we can rewrite the

interaction term with the effective pairing between atoms.
Because the inversion symmetry is broken for the single-
particle Hamiltonian, the system may favor Cooper pairing
with a finite center-of-mass momentum between two
fermions of opposite spins. For simplicity, the chemical
potential is chosen appropriately where there is only one
simple Fermi surface [see Fig. 1(c)]; therefore, we could
consider a plane-wave FF-type inter- and intraband pairing
ΔμνðxÞ ¼ ΔμνeiQ·x, similar as that in the spin-orbit coupled
system [15–21]. Here, Δμν ¼ gμνhc↑μðQ=2þ kÞc↓νðQ=2 −
kÞi denotes the amplitude of the s-wave order parameter
between two orbital states μ and ν, and the FF vector
Q ¼ ðQ; 0; 0Þ is the Cooper pairing momentum which is
along the moving lattice direction. Note that the effective
pairing on the asymmetric Fermi surface [Fig. 1(c)] could
be k dependent (i.e., with non-s-wave components) due to
the k-dependent hybridization coefficients [determined by
the eigenfunction of the Hamiltonian (2)] of two orbital
bands for the asymmetric Fermi surface [35]. On the
basis of spinor ½ΨðQ=2þ kÞ; Ψ�ðQ=2 − kÞ�T with Ψ ¼
ðc↑s; c↓s; c↑px

; c↓px
ÞT , the Bogliubov–de Gennes (BdG)

Hamiltonian can be written as

HBdGðkÞ ¼
�
H0ðQ2 þ kÞ ⊗ σ0 Δ4×4

Δ†
4×4 −H0ðQ2 − kÞ ⊗ σ0

�
; ð3Þ

where σi (i ¼ x, y, z, 0) are the Pauli matrices,

Δ4×4 ¼
� Δss −Δsp

Δps Δpp

�
⊗ ð−iσyÞ: ð4Þ

For each set of system parameters ðV0; V 0
x; UÞ, the

corresponding parameters Ω, α, β, ts, tp in the BdG
Hamiltonian (3) are calculated from the Wannier functions,
from which the order parameter amplitude Δμν and the FF
vector Q are simultaneously obtained by minimizing the
thermodynamic potential. When Δμν ≠ 0 and Q ≠ 0, the
system is in an FF phase. WhenΔμν ≠ 0,Q ¼ 0, the system
is in a Bardeen-Cooper-Schrieffer (BCS) phase. Otherwise,
the system is a normal gas.
Phase diagrams.—In Fig. 2 we plot the intraorbital order

parameter Δss and the Cooper pairing momentum Q with
respect to the static and moving lattice depths V0, V 0

x. Δsp

and Δpp are much smaller than Δss [32], which is ascribed

to the initial dominant populations of the s-orbital band at
the position of the chemical potential. The s- and px-orbital
band tunneling and coupling parameters (ts, tp, Ω, α)
depend on the static lattice depth V0 implicitly; therefore,
Δss does not change monotonically. However, Ω and α
depend on V 0

x linearly, which directly determine the single-
particle band structure; therefore, Q increases with increas-
ing V 0

x. Because the coupling between s- and px-orbital
states does not depend on spins (the internal states) of
atoms, Ω, α, and β modify the energy dispersion in the
same way for the two spins, leading to the spin degenerate
asymmetric Fermi surface as shown in Fig. 1(c). Such spin-
balanced asymmetric Fermi surface has little effect on
suppressing the order parameter, in contrast to the strong
suppression of the finite momentum pairing order induced
by an external Zeeman field. Therefore, Δss is large and
does not change much in the whole parameter region. Q is
proportional to both Ω and α as shown in Fig. 2(b). When
V 0
x ¼ 0, all the coupling coefficients vanish and the band

inversion symmetry is preserved; thus, the superfluid
becomes a conventional BCS state.
When the on-site interaction U is tuned by changing

the s-wave scattering length through Feshbach resonance,
the system undergoes a BCS–Bose-Einstein-condensation
(BCS-BEC) crossover. BCS-BEC crossover physics of
Fermi gases has been widely studied in free space and
in lattices [36,37]. Here, we present the phase diagram in
the U-V 0

x plane in Fig. 3. From Fig. 3(a), we see Δss is

FIG. 2. Phase diagrams of FF superfluids. The color describes
the amplitude of (a) the order parameter Δss and (b) the FF vector
Q. Other parameters are U ¼ 6.0ts, μ ¼ 10.0ts, h ¼ 8.0ts.

FIG. 3. Phase diagrams in the BCS-BEC crossover. The color
describes the amplitude of (a) the order parameter Δss and (b) the
FF vector Q. V0 ¼ 4ER with ts ¼ 0.0855ER. Other parameters
are μ ¼ 10.0ts, h ¼ 8.0ts.
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mainly determined by the U and changes only slightly with
the increase of moving lattice depth V 0

x. FF states with large
Q exist in a large parameter region which dominates when
the moving depth is large. In the weak and medium
interaction regimes, the order parameters are small and
the ground state is mainly governed by the single-particle
Hamiltonian. Therefore, Q could be significant because of
its sensitivity to the single-particle dispersion. In the very
strong interaction regime, the fermions form tightly bound
molecules and the influence of the asymmetric energy
dispersion on Cooper pairs is negligible. Therefore, Q
gradually decreases for a large U and the ground state
eventually becomes a BCS state.
Stability of FF superfluids.—The stability of the FF

superfluid may be characterized by the thermodynamic
potential difference EFF − EBCS between the FF ground
state and the possible BCS excited state (by enforcing
Q ¼ 0), which is shown in Fig. 4(a). The larger
jEFF − EBCSj, the FF state is more stable. When V 0

x ¼ 0,
the inversion symmetry is preserved and the FF superfluid
becomes the BCS state, therefore EFF ¼ EBCS. With the
increasing V 0

x, EFF − EBCS becomes negative, indicating
that the asymmetric energy dispersion favors FF super-
fluids. In Fig. 4(b), we plot the thermodynamic potential E
in the Δss-Q plane for the premium values of Δsp and Δpp

that minimize the total energy, which shows that the FF
state is indeed the global minimum of the thermodynamic
potential.
Compared with a Zeeman-field induced spin-imbalanced

system, we find that the energy difference between the FF
and BCS states in our system is one order of magnitude
larger for the same interaction strength. Moreover, the FF
states only exist in a very narrow Zeeman field parameter
region (∼10−2ts) in the spin-imbalanced schemes and thus
it is hard to find their signature experimentally. In contrast,
the FF superfluids in our spin-balanced system exist in
almost the whole parameter region.

Ω and α are proportional to the moving lattice depth V 0
x,

and can be tuned in a wide parameter range to achieve an
extremely asymmetric energy dispersion. In Fig. 4(a), we
see EFF − EBCS decreases sharply when V 0

x is large.
Therefore, with a larger V 0

x, jEFF − EBCSj may be much
larger than that shown in Fig. 4(a), which is generally
impossible in the spin-imbalanced Fermi gases. This
advantage, together with the large parameter region for
FF states, make our proposed spin-balanced Fermi gas
experimentally more feasible for observing FF superfluids
than the spin-imbalanced systems.
Experimental observation.—The proposed FF superflu-

ids can be realized with different types of fermionic atoms,
such as 40K and 6Li. In the following, we illustrate the
experimental setup and observation using 40K. The ultra-
cold 40K gas with a spin-balanced mixture of internal states
jF;mFi ¼ j9=2;−9=2i and j9=2;−7=2i [38] is trapped in a
3D static optical lattice created by counterpropagating far-
detuned lasers with wavelength λ ¼ 1064 nm that defines
the wave vector kL ¼ 2π=λ and the recoil energy
ER ¼ ℏ2k2L=2m ¼ 2πℏ × 4.5 kHz. The lowest two orbital
bands, s and px orbital, have a gap Δg ≈ 2.6ER when the
static lattice depth is tuned as V0 ¼ 3.0ER. The 1D moving
lattice, created by another two counterpropagating lasers
with a slight frequency difference of ω ∼ Δg=ℏ, can be
tuned to have a lattice depth of V 0

x ¼ 0.1 ∼ 0.8ER. With
these parameters, the resulting coupling strengths have a
range of Ω ¼ 0.24 ∼ 1.88ts and α ¼ 0.19 ∼ 1.56ts
(ts ¼ 0.111ER). The maximum value of FF momentum
Q could be as large as 0.3kL and the corresponding order
parameter Δ ∼ ts. Signatures of FF superfluids can be
captured by the atom shot noise [39], or the sound speed
measurement [40–42].
Discussion.—In our spin-balanced system, only FF

superfluids are possible because of the asymmetric s-p
hybrid band structures. Even though the FF superfluid
momentum Q could be gauged away from the order
parameter’s phase, Q is still revealed in the supercurrent
of the system which is a gauge-invariant observable
quantity [32]. The measurement of the supercurrent pro-
vides useful information of the system such as the s-p band
coupling strength and the interaction strength.
Finally, we note that similar time periodic modulation of

the lattices to generate exotic band structure, know as
“Floquet engineering" [43–49], has been investigated
extensively in experiments, leading to the observation of
various important phenomena [38,50–52], where the
atomic spin states are irrelevant. However, the effects of
s-wave interaction between two spins of the Fermi gas has
not been well explored and our proposed FF superfluids
showcase the rich quantum phases that may be generated
by the s-wave two-body interactions in such Floquet
systems. Our proposed band-pseudospin-momentum cou-
pling in optical lattices may open a new avenue for
exploring exotic spin-orbit coupling physics.

FIG. 4. (a) The thermodynamic potential difference of the FF
states and the possible BCS state as a function of V 0

x for V0 ¼
4ER (blue solid line, for which ts ¼ 0.0855ER) and V0 ¼ 5ER
(orange dashed line, for which ts ¼ 0.0658ER). (b) The contour
plot of the thermodynamic potential E in the Δss −Q plane for
V0 ¼ 4.0ER, V 0

x ¼ 2.0ER. The cross symbol corresponds to the
self-consistent solution Δss ¼ 3.14ts, Q ¼ 0.377kL. Other
parameters are U ¼ 8.0ts, μ ¼ 10.0ts, h ¼ 8.0ts.
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Note added.—Recently, the modification of the band
structure by the moving lattice has been observed exper-
imentally with a BEC [53].
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