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The recent experimental realization of spin-orbit coupling for ultracold atomic gases provides a powerful
platform for exploring many interesting quantum phenomena. In these studies, spin represents the spin
vector (spin 1=2 or spin 1) and orbit represents the linear momentum. Here we propose a scheme to realize a
new type of spin-tensor–momentum coupling (STMC) in spin-1 ultracold atomic gases. We study the
ground state properties of interacting Bose-Einstein condensates with STMC and find interesting new types
of stripe superfluid phases and multicritical points for phase transitions. Furthermore, STMC makes it
possible to study quantum states with dynamical stripe orders that display density modulation with a long
tunable period and high visibility, paving the way for the direct experimental observation of a new
dynamical supersolidlike state. Our scheme for generating STMC can be generalized to other systems and
may open the door for exploring novel quantum physics and device applications.
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Introduction.—The coupling between matter and a gauge
field plays a crucial role for many fundamental quantum
phenomena and practical device applications in condensed
matter [1–3] and atomic physics [4]. A prominent example
is the spin-orbit coupling, the coupling between a particle’s
spin and orbit (e.g., momentum) degrees of freedom, which
is responsible for important physics such as topological
insulators and superconductors [2,3]. In this context, the
recent experimental realization of spin-orbit coupling in
ultracold atomic gases [5–13] opens a completely new
avenue for investigating quantum many-body physics
under a gauge field [14–28].
So far in most works on spin-orbit coupling in solid state

and cold atomic systems, the spin degrees of freedom are
taken as rank-1 spin vectors Fi (i ¼ x, y, z), such as electron
spin 1=2 or pseudospins formed by atomic hyperfine states
that can be large (e.g., spin 1 or 3=2). Experimentally, spin-
orbit coupling for spin-1 Bose-Einstein condensates (BECs)
has been realized recently [29,30], and interestingmagnetism
physics has beenobserved [31–35].Mathematically, it iswell
known that there exist not only spin vectors but also spin
tensors [e.g., irreducible rank-2 spin-quadrupole tensor
Nij ¼ ðFiFj þ FjFiÞ=2 − δijF2=3] in a large spin (≥ 1)
system. Therefore, two natural questions are the following.
(i) Can the coupling between spin tensors of particles and
their linear momenta be realized in experiments? (ii) What
new physics may emerge from such spin-tensor–momentum
coupling (STMC)?
In this Letter, we address these two questions byproposing

a simple experimental scheme for realizing STMC for spin-1
ultracold atomic gases. Our scheme is based on a slight
modification of a previous experimental setup [29] and is
experimentally feasible. The STMC changes the band
structure dramatically, leading to interesting new physics
in the presence of many-body interactions between atoms.

Although both bosons and fermions can be studied, here we
consider only spin-1 BECs to illustrate the effects of STMC.
Our main results are as follows.
(i) The single-particle band structure with STMC con-

sists of two bright-state bands (top and bottom) and one
dark-state middle band [Fig. 1(b)], where the dark-state
band is not coupled with two bright-state bands through
Raman coupling. However, the dark-state band plays an
important role on both ground-state and dynamical proper-
ties of the interacting BECs.
(ii) We study the ground-state phase diagrams with exotic

plane-wave and stripe phases, where the dark-state middle
band can be partially populated despite the single-particle
ground state. The stripe phase is a coherent superposition of
two ormore plane-wave states. It possesses both a superfluid
property as a BEC and a crystal-like density modulation that
spontaneously breaks the translational symmetry of the
Hamiltonian, satisfying two major criteria for the supersolid
order [36]. Experimentally, the stripe order has recently been
observed indirectly using Bragg reflection [37]. We find that

(a) (b)

FIG. 1. (a) Top: Experimental scheme to generate STMC in a
BEC. Bottom: Raman transitions between three hyperfine spin
states with detuning Δ. (b) Single-particle band structure for
Raman strength Ω ¼ 0.5 and detuning Δ ¼ 0.1. The (dominant)
spin components j0i and j�i ¼ ð1= ffiffiffi

2
p Þðj↑i � j↓iÞ are indicated

around the corresponding band minima.

PRL 119, 193001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 NOVEMBER 2017

0031-9007=17=119(19)=193001(6) 193001-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.193001
https://doi.org/10.1103/PhysRevLett.119.193001
https://doi.org/10.1103/PhysRevLett.119.193001
https://doi.org/10.1103/PhysRevLett.119.193001


the transitions between different phases possess interesting
multicriticality phenomena with triple, quadruple, and even
quintuple points.
(iii) The existence of the dark middle band makes it

possible to study quantum states with dynamical super-
solidlike stripe orders. In particular, we show how to
dynamically generate a stripe state with a long tunable
period (∼5 μm) and high visibility (∼100%) of density
modulation, which may be directly measured in experi-
ments (such a direct measurement is still challenging for the
ground-state stripe patterns due to their short period and
low visibility [38]). The dynamical stripe state as a super-
fluid BEC, although not the ground state, does possess
interesting stripe patterns that break the translational
symmetry of the Hamiltonian, resembling a dynamical
supersolidlike order.
The model.—We consider a setup similar to that in the

recent experiment [29] but with a slightly different laser
configuration, as shown in Fig. 1(a), where three Raman
lasers with wave number kR are employed to generate
STMC. The three lasers induce two Raman transitions
between hyperfine spin states j0i and j↑ð↓Þi, both of which
have the same recoil momentum 2kR along the x direction.
The single-particle Hamiltonian in the spin-1 basis
ðj↑i; j0i; j↓iÞT is (we set ℏ ¼ 1)

~H0 ¼ −
∇2

2m
þ ΔF2

z þ ð
ffiffiffi
2

p
Ωei2kRxj0ihþj þ H:c:Þ; ð1Þ

where F2
z ¼ j↑ih↑j þ j↓ih↓j is equivalent to the spin tensor

Nzz (up to a constant), jþi≡ ð1= ffiffiffi
2

p Þðj↑i þ j↓iÞ, Ω is the
Raman coupling strength, and Δ is the detuning for both
j↑i and j↓i states. We see that another spin state j−i≡
ð1= ffiffiffi

2
p Þðj↑i − j↓iÞ is always an eigenstate, does not couple

to j0i nor jþi through Ω, and thus is a dark state.
Since the BEC wave function in the y and z directions is

not affected by theRaman lasers, we can consider the physics
only along the x direction [33–35]. After a unitary trans-
formation U ¼ expð−i2kRxF2

zÞ to the quasimomentum
basis, we write the Hamiltonian in energy and momentum
units k2R=2m and kR, respectively, as

H0 ¼ −∂2
x þ ðΔþ 4þ 4i∂xÞF2

z þ
ffiffiffi
2

p
ΩFx; ð2Þ

whereΩ andΔ are the dimensionless transverse-Zeeman and
spin-tensor potential, respectively, and ði∂xÞF2

z describes the
coupling between spin tensor F2

z and the linear momentum,
i.e., STMC.
The single-particle Hamiltonian has three energy bands

[see a typical structure in Fig. 1(b)]. The dark-state middle
band always has the spin state j−i and spectrum
ðk − 2Þ2 þ Δ, which are independent of Ω. The top and
bottom bright-state bands exhibit the same behavior as the
known spin-orbit-coupled spin-1=2 system with spin states
j0i and jþi. The decoupling of the middle band is protected

by the spin-tensor symmetry ½F2
x; H0� ¼ 0, under which the

middle band (top and bottom bands) corresponds to hF2
xi¼0

(1). Although the single-particle ground state always selects
the bottom band, the atomic interactions can break the
symmetry and drastically change the BEC’s ground state
as well as dynamical properties by involving the
middle band.
Under the Gross-Pitaevskii (GP) mean-field approxima-

tion, the energy density becomes

ε ¼ 1

V

Z
dx

�
Ψ†H0Ψþ g0

2
ðΨ†ΨÞ2 þ g2

2
ðΨ†FUΨÞ2

�
; ð3Þ

with V the system volume and Ψ the three-component
condensate wave function normalized by the average
particle number density n̄ ¼ V−1 R dxΨ†Ψ. The interaction
strengths g0;2 represent density and spin interactions in
spinor condensates [39,40], respectively. FU ¼ U†FU is
the unitarily transformed spin operator, whose x and y
components exhibit spatial modulation that cannot be
eliminated through any local spin rotation (different from
previous models [33–35]). Such a modulation is essential
for stripe phases in the system.
We consider a variational ansatz [41]

Ψ ¼ ffiffiffī
n

p ðjc1jχ1eik1x þ jc2jχ2eik2xþiαÞ ð4Þ

to find the ground state, with jc1j2þjc2j2¼1, and spinors
χj ¼ ðcos θj cosϕj;− sin θj; cos θj sinϕjÞT . The energyden-
sity now becomes a functional of eight variational parameters
jc1j, k1, k2, θ1, θ2, ϕ1, ϕ2, and α, and its minimization
(εg ¼ minfεg) leads to the ground state [41]. The quantum
phase diagram can be characterized by the variational wave
function, experimental observables hFzi and hF2

zi, and the
symmetry hF2

xi. The derivative of the ground-state energy
∂εg=∂Δ¼hF2

zi (∂2εg=∂Δ2¼∂hF2
zi=∂Δ) displays disconti-

nuity as Δ varies across a first-order (second-order) phase
boundary [41]. This argument also applies to ∂εg=∂Ω
(∂2εg=∂Ω2) [41]. We also numerically solve the GP equation
using imaginary time evolution to obtain the ground states,
which are in good agreement with the variational results.
Phase diagram.—For ferromagnetic interaction g2 < 0

(e.g., 87Rb), the BEC has three plane-wave (jc1c2j ¼ 0) and
two stripe (jc1c2j ≠ 0) phases (Fig. 2): (I) plane-wave phase
in k < 1, having hFzi ¼ 0 (spin unpolarized), hF2

zi < 0.5,
and hF2

xi ¼ 1 (middle band unpopulated); (II) plane-wave
phase in k > 1, having hFzi ¼ 0, hF2

zi > 0.5, and hF2
xi¼1;

(III) spin-polarized plane-wave phase in k > 1 having
hFzi ≠ 0 and hF2

xi < 1 (middle band populated);
(IV) mix-band stripe phase, having k1 < 1, k2 > 1, and
hF2

xi < 1; (V) bottom-band stripe phase, the same as
(IV) except hF2

xi ¼ 1. The last three phases exhibit Z2

ferromagnetism: Phases (III), (IV), and (V) all have twofold
degenerate ground states with global ferromagnetic order
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�hFzi ≠ 0, �hFyi ≠ 0, and �hFxi ≠ 0, respectively. Note
that these orders are calculated in the laboratory frame (the
basis of ~H0) and reflect the energetic favor by the
ferromagnetic interaction. For antiferromagnetic interac-
tion g2 > 0 (e.g., 23Na), the system has a relatively simple
phase diagram containing only two plane-wave phases [(I)
and (II)], separated by a first-order phase boundary at
Δ ¼ 0. Hereafter, we focus on the ferromagnetic case.
In Fig. 2(a), we plot the phase diagram in the Ω-Δ plane.

At a sufficiently large Ω, the middle band does not
participate in the ground state, so the phase diagram is
similar to the spin-orbit-coupled spin-1=2 system: The two
plane-wave phases (I) and (II) are separated by a first-order
transition boundary (solid line along Δ ¼ 0) if Ω < Ωc or a
crossover one (dashed line) if Ω > Ωc. As Ω decreases, the
middle band minimum gets closer to the right minimum of
the bottom band [Fig. 1(b)]. If the BEC originally stays in
the plane-wave phase (II) (Δ < 0), it starts to partially
occupy the middle band [Fig. 2(b), bottom inset], under-
going a second-order transition (dotted curve) to the
polarized phase (III). From the energetic point of view,
the BEC populates to a slightly higher single-particle
energy state to get polarized to reduce ferromagnetic
interaction energy. Note that phase (III) is still a plane-
wave phase, since the BEC occupies both bands at the
same k.
At a small Ω and Δ > 0, the energy difference between

the single-particle band minimum [plane wave (I)] and the
other bottom-band minimum [plane wave (II)] or the
middle-band minimum is comparable to the interaction
energy, so the BEC may favor the cooccupation of (I) and a
higher-energy local minimum as long as the total energy
can be reduced more by the interaction. In Fig. 2(b), we
enlarge the framed region of Fig. 2(a) and show the
emergence of two stripe phases. The mix-band stripe phase
(IV) is the superposition of plane wave (I) and the one

around the middle-band minimum (top inset). Phase (IV)
exhibits spin-density waves due to the superposition
[Fig. 3(a)] and a global ferromagnetic order hFyi ≠ 0 that
reduces the g2 interaction energy, compensating the higher
middle-band energy. Note that phase (IV) has a uniform
total density due to the orthogonality between the middle-
and bottom-band spins, but the spin-density waves form a
stripe pattern. The bottom-band stripe phase (V), which
appears at even weakerΩ andΔ, is the superposition of two
bottom-band plane waves (I) and (III) [Fig. 2(d), inset].
Phase (V) exhibits a total-density wave [Fig. 3(b)], which,
compared with (IV), increases the g0 interaction energy, but
the total energy is favorable due to the pure bottom-band
occupation and global ferromagnetic order hFxi ≠ 0. We
remark that the superposition of three plane waves (with
cooccupation of three band minima) is never energetically
favorable, because it cannot maximize the ferromag-
netic order.
Returning to the phase diagram in Fig. 2(b), the (I)–(IV)

phase boundary corresponds to a second-order transition,
which meets the (II)–(III) boundary at a quadruple point
Cquad at Δ ¼ 0. The (IV)–(V) boundary corresponds to a
first-order transition, which encounters phase (III) at a triple
point CT

3 at Δ ¼ 0. To study the dependence on the
interaction, we plot the phase diagram in the Δ − g plane
in Fig. 2(c), with a fixed ratio g0 ¼ −50g2 ≡ g. We see that
the stripe region increases with g (due to the increasing g2),
and phase (IV) is more favorable than (V) in the large-g
region (due to the large g0). For the plane-wave phases (II)
and (III), the latter has global ferromagnetic order hFzi ≠ 0
and is hence favorable with a strong interaction. The Δ-g
diagram also shows first-order transitions between any two
of (III), (IV), and (V) phases, second-order transitions
between any other adjacent phases, and four triple points
CT
1;2;3;4 at the (I)-(II)-(V), (II)-(III)-(V), (III)-(IV)-(V), and

(I)-(IV)-(V) encounters, respectively. In Fig. 2(d), we show
how the encounters of phases along Δ ¼ 0 change with the
interaction. We see that phases (III) and (IV) survive at

FIG. 2. (a) Ground-state phase diagram in the Ω-Δ plane with
gn̄ ¼ 3. The dashed line is a crossover boundary. (b) Enlargement
of the framed region in (a). (c) [(d)] Ground-state phase diagram
in the g-Δ (g-Ω) plane with Ω ¼ 0.16 (Δ ¼ 0). Solid (dotted)
lines represent first- (second-) order phase transitions. The
interaction ratio is g0 ¼ −50g2 ≡ g.

(c) (d)

(a) (b)

FIG. 3. (a) [(b)] The local densitymodulations of phase (IV) [(V)]
in Fig. 2(b), with Ω ¼ 0.16 and Δ ¼ 0.006 (Δ ¼ 0.023). (c) [(d)]
hF2

zi (blue solid line) and hFzi (red dashed line) vsΩ (Δ) along the
pathΔ ¼ −0.018 (Ω ¼ 0.16) in Fig. 2(b). Dots (lines) are obtained
from the imaginary time GP equation (variational method).
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large g, while (I) and (II) survive at large Ω, in agreement
with the energetic argument. The boundaries represent
three traces of triple points CT

1;3 and quadruple point Cquad,
respectively, which intercept at a quintuple point Cquin as
the joint of all five phases.
In Figs. 3(a) and 3(b), we plot spatial profiles of each

spin component’s density ρ↓;0;↑ and total density ρt for
stripe phases (IV) and (V), respectively. Phase (IV) shows
out-of-phase modulations between ρ↑ and ρ↓, representing
a spin-vector (Fz) density wave, and uniform ρ0 and ρt,
while (V) shows in-phase modulations of all components
and hence ρt, of which ρ↑;↓ overlap each other, representing
a spin-tensor (F2

z) density wave. The modulation wave-
length matches the laser’s recoil momentum 2kR (i.e.,
jk2 − k1j ¼ 2kR). This can be understood in the quasimo-
mentum frame that the minimization of g2 interaction
energy requires equal modulations between the spin com-
ponents and the spin operator FU in Eq. (3). Since the
separation between two band minima is smaller than 2kR at
finite Ω, the two plane-wave components of the stripe
phases do not exactly stay on the band minima. In Figs. 3(c)
and 3(d), we plot hFzi (squares) and hF2

zi (circles) along
(III)-(II) and (III)-(V)-(IV)-(I) transition paths in Fig. 2(b),
respectively. The discontinuity in spin-tensor polarization
hF2

zi (its first derivative) indicates the occurrence of a first-
order (second-order) phase transition.
Dynamical stripe state.—Themiddle-bandminimum and

the right bottom-bandminimum are close to each other (both
near k ¼ 2). Therefore, a coherent superposition of plane
waves on these twominima leads to a long-period stripe state,
which can be directly measured in experiments. To generate
such a stripe state, we consider 87Rb atoms in a harmonic trap
ω ¼ 2π × 50 Hz, initially prepared in spin state j↑iwith the
Raman lasers off andΔ < 0 [the initial state belongs to phase
(III), since the two minima coincide and are equally
populated as j↑i¼ð1= ffiffiffi

2
p Þðjþiþj−iÞ]. The 800-nm

Raman lasers are gradually turned on such that Ω increases
from 0 toΩf within a time T and then remains constant. If we
consider an adiabatic process, where the ramping rate ofΩ is
much slower than the energy scale of the spin-interaction
strength g2n̄, the system will stay in the ground-state plane-
wave phase (III) until Ω exceeds the critical value where a
transition to plane-wave phase (II) occurs. While for a
dynamical process where the ramping rate of Ω is much
faster than the spin-interaction strength (but much slower
than other energy scales such as the trapping frequency), the
system no longer stays in the ground state, and the BEC on
the two band minima are expected to split in the momentum
space, leading to the stripe state.
Figures 4(a) and 4(d) show the results of a real-time GP

simulation for noninteracting atoms. The averaged
momenta k̄b and k̄m of atoms in the bottom and middle
bands follow their band minima respectively, with k̄b
displaying slight dipole oscillation [42] at t > T due to

the collective excitations caused by the finite increasing
rate of Ω. The final state is a stripe state similar to phase
(IV) but with a much higher visibility and a longer period,
and the stripe pattern is moving rather than stationary due to
the dynamical phases of the two bands [41].
For atoms with realistic interactions jg2j ≪ g0 and

considering a dynamical process much faster compared
to g2n̄, we can neglect the spin interaction and focus on the
density-interaction effects. The density interaction pre-
serves the symmetry F2

x, and thus the atom populations
of the two bands remain unchanged. However, k̄m shifts
together with k̄b at the beginning and then they separate and
eventually return to their band minima, respectively. At
t > T, the density interaction induces synchronous dipole
oscillations of k̄m and k̄b with a frequency different from
the single-particle case [see Fig. 4(b)]. Nevertheless, we
obtain a stripe state as the final state [see Fig. 4(e)] with a
long period (∼5 μm forΩf ¼ 0.7) and high visibility (close
to 100%). For 87Rb with g2 ¼ −0.005g0, such dynamical
stripe states can always be obtained in the region where
jg2jn̄ ≪ T−1 [41]. Also, the stripe period can be tuned by
changing the value of Ωf (e.g., Ωf ¼ 1 leads to a period of
∼3 μm) [41]. Such periodic density modulations of
dynamical stripe phases break the translational symmetry
of the Hamiltonian, showing dynamical supersolidlike
properties.
In the opposite region where the dynamical process is

slow compared to the spin interaction, the system follows
the plane-wave ground state. As Ω increases, atoms are
transferred from the middle to bottom band until a
transition to phase (II) occurs. Thus, the final state has
no middle-band population and no stripe states would be
obtained, as shown in Figs. 4(c) and 4(f) with tiny stripes
caused by weak excitations.
Conclusions.—In summary, we propose a scheme to

realize STMC in a spin-1 BEC and study its ground-state

FIG. 4. (a)–(c) Averaged momentum k̄m (k̄b) and percentage
population (color bar) of atoms in the middle (bottom) band. The
thin dashed line in (a) shows the band minima. (d)–(f) The initial
(dashed line) and final (solid line) spin density ρ↑ corresponding
to (a)–(c), respectively. The interactions are ðg0n̄; g2n̄Þ ¼ ð0; 0Þ,
(0.5,0), and ð4;−0.2Þ for (a), (b), and (c), respectively. Other
parameters are T ¼ 100 ms, Δ ¼ −0.05, and Ωf ¼ 0.7.
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and dynamical properties. The interplay between STMC
and atomic interactions leads to many interesting quantum
phases and multicritical points for phase transitions. The
STMC offers a simple way to generate a new type of
dynamical stripe states with high visibility and long tunable
periods, paving the way for the direct experimental obser-
vation of long-sought stripe states. The proposed STMC for
ultracold atoms opens the door for exploring many other
interesting physics, such as STMC fermionic superfluids,
Bogoliubov excitations with an interesting roton spectrum
[43,44], non-Abelian STMC (similar to Rashba spin-orbit
coupling), and STMC in optical lattices (where nontrivial
topological bands may emerge).
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