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The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied
in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors
(superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson
junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are
coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by
applying the equivalent of “voltages,” but also by tuning tunneling phases. Such tunneling-phase-driven
Josephson junctions in momentum space are characterized through both full mean field analysis and a
concise two-level model, demonstrating the important role of interactions between atoms. Our scheme
provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their
applications in quantum-mechanical circuits.
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Introduction.—The Josephson effect [1,2] is an intriguing
quantum phenomenon of supercurrents across a device known
as a Josephson junction (JJ). A typical JJ consists of two
macroscopic quantum systems [e.g., superconductors, super-
fluids, orBose-Einstein condensates (BECs)] that are separated
in real or spin space andweakly coupled by quantum tunneling
through a thin barrier [Fig. 1(a)] or by Rabi coupling between
different spins. Because of quantum tunneling of particles
across the junction, JJs have found important applications in
quantum-mechanical circuits, such as SQUIDs [3,4], super-
conducting qubits [5–8], and precision measurements [3]. In
experiments, JJs have been widely realized in solid state
superconductors [9,10], superfluid helium [11–14], and
recently, in ultracold atomic gases [15–26], where oscillating
supercurrentswere generated by applying a voltage drop (or its
equivalent) across JJs while maintaining a constant weak
coupling (i.e., ac Josephson effect [27]).
While JJs have been well studied in real space, a natural

and important question is whether Josephson effects can
also be observed in momentum space. In this Letter, we
address this question and propose a scheme for realizing
momentum-space JJs (MSJJs). In analogy to bosonic JJs in a
real-space doublewell [22,23], aMSJJ may be realized with
a momentum-space double-well dispersion [see Fig. 1(a)],
which is an essential property of spin-orbit coupled systems
[28,29]. Spin-orbit coupling (SOC) is ubiquitous in solid
statematerials and has recently been realized experimentally
in ultracold atomic gases [29–41]. In the presence of SOC,
condensates at distinct band minima can be considered as
two distinct independent quantum systems.However, unlike
quantum tunneling between two wells in real space, two
BECs at distinct momenta are not directly coupled.

Here we propose a MSJJ facilitated by a tunable
interwell coupling in an spin-orbit coupled BEC [42,43],
where the coupling is generated by an additional pair of
counterpropagating Raman lasers. Such Raman-assisted
tunneling between two momentum states changes both the
atomic spin and momentum, and thus couples the con-
densates at the two band minima. The SOC strength
dictates the height of the insulating barrier while the
Raman detuning serves as an effective voltage between
the two band minima. Suddenly changing the detuning
(i.e., applying a voltage) induces a coherent oscillation of
the BECs between the two band minima (i.e., supercurrent

FIG. 1. (a) Illustration of a conventional JJ for real-space
superconductors (top) versus MSJJ (bottom), where the
double-well band dispersion is generated using a spin-orbit
coupled BEC. (b),(c) Experimental setup for realizing a MSJJ.
Two pairs of Raman lasers realize SOC (blue) and weak coupling
(red) between two band minima, respectively.
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oscillations), similar to traditional ac Josephson effects in
superconductors. More interestingly, the phase of the
Raman-assisted tunneling between BECs at the two band
minima is highly tunable [44], in contrast to real tunneling
coefficients for real-space JJs in superconductors [9,10] and
double-well BECs [22,23]. We show that a sudden change
of the tunneling phase (while keeping the effective voltage
unchanged) can also induce Josephson effects of super-
currents, a phenomenon that we name as “tunneling-phase-
driven JJ.” We focus on this new type of Josephson effect
and study its properties through both full mean-field
simulation with the Gross-Pitaevskii equation (GPE)
[15,45] and the development of an effective two-level
model. Our results present rich physics in this system with
different types of supercurrent oscillations (Josephson,
plasmonic [17], self-trapping [17,22], etc.) and display
the important role of many-body interactions between
atoms. Because of their stability and high controllability,
the proposed MSJJs and tunneling-phase-driven JJs may
have potential applications for building novel quantum
mechanical circuits.
Experimental setup and theoretical modeling.—We con-

sider a BEC confined in an elongated trap. Two internal
states j ↑i and j↓i are coupled by two counterpropagating
Raman lasers with Rabi frequenciesΩa andΩb, forming an
effective one-dimensional (1D) SOC dispersion relation
along the x direction [see Figs. 1(b) and 1(c)]. Hereafter we
choose recoil momentum ℏkR and recoil energy ER ¼
ℏ2k2R=2m for the Raman lasers as the units of momentum
and energy. Consequently, we have length and time in units
of 1=kR and ℏ=ER. The 1D SOC displays a double-well
band dispersion in momentum space with two band minima
located at �kL ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ=4Þ2

p
, where Ω is the Raman

coupling strength [46]. The tunneling between BECs at
�kL requires simultaneous change of spin and momentum,
which can be realized using another independent pair of
Raman lasers Ωa0 and Ωb0 incident at an angle θL ¼
arccos ð1 − kLÞ to the x axis [Fig. 1(b)]. The frequencies
of the pair ða0; b0Þ are shifted from those of the pair ða; bÞ
by Δ0 ∼ 100 MHz so that the interference between them is
negligible. The frequency difference between a0 and b0
should match that between a and b to generate a time-
independent coupling.
Since only the x direction is relevant for the SOC

dynamics, the other two directions can be integrated out,
yielding an effective 1D system. The dynamics of the
system can be described by the GPE

i
∂
∂tψ ¼

�
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ω2
xx2 þ

g
2
jψ j2
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ψ ð1Þ

under the mean-field approximation, where ψ ¼ ðψ↑;ψ↓ÞT
is the two component condensate wave function normalized
by the average particle number density n ¼ R

dxψ†ψ, ωx

represents trapping frequency of harmonic trap. For a

typical 87Rb BEC, the effective density interaction ng ∼
0.1 with ∼104 atoms (see “Experimental consideration.”
section) and the spin interaction is negligible. The Raman
coupling does not affect atomic interactions. The single
particle Hamiltonian can be written as [47,49]

H0 ¼
� ðpx − 1Þ2 − δ

2
Ω
2
þ eiϕLΩLe2ikLx

Ω
2
þ e−iϕLΩLe−2ikLx ðpx þ 1Þ2 þ δ

2

�

; ð2Þ

where ΩL is the coupling strength generated by the
tunneling lasers, ϕL is the relative phase between the
two Raman couplings, and δ is the detuning.
The ground state of the BEC is obtained from the

imaginary time evolution of the GPE [47,50] using a
time-split-operator method, resulting in the phase diagram
shown in Fig. 2(a) in the ΩL − δ plane, where the color
represents spin polarization hσzi. For weakΩL, interactions
lock the condensate to one momentum minimum, yielding
a plane-wave phase at large detunings. There is a first-order
phase transition [black line in the inset of Fig 2(a)] when δ
crosses 0. With increasing ΩL, the single-particle coupling
dominates over the interaction; hence, the ground state is in
a stripelike phase with a real-space density modulation
[Fig. 2(b)], and hσzi varies continuously and smoothly with
respect to δ [white line in the inset of Fig. 2(a)]. While a
supersolid stripe phase is defined through spontaneous
breaking of both continuous translational and gauge sym-
metries [51–54], here continuous translational symmetry is
synthetically broken by the periodic potential e2ikLx.
Nevertheless, the ground state is the superposition of
two band minima, similar to an authentic stripe phase
induced by interactions.
The additional Raman lasers ΩL couple not only the two

band minima, but also other states from both lower and

FIG. 2. (a) Ground state phase diagram, where Ω ¼ 2.7, ϕL ¼
0 and ng ¼ 0.07. The inset shows the first-order phase transition
for small ΩL. Black, dark gray, light gray, and white lines
correspond to ΩL ¼ 0.01, 0.1, 0.2, and 0.5, respectively. (b) Real
space density modulation for the ground state with parameters
δ ¼ 0.054 and ΩL ¼ 0.015 as denoted by the black cross in (a).
(c) Illustration of induced couplings between six most relevant
momentum states.
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upper bands. The six most relevant momentum states ψ i are
shown in Fig. 2(c). Expanding the wave function ψ ¼P

6
i¼1 Ciψ i in this six-state basis, we obtain a 6 × 6

effective Hamiltonian [47]. The direct coupling between
the two band minima at 2 and 5 is −V0e∓iϕL with
V0 ¼ 1

2
ΩLð1þ kLÞ, while the couplings with other neigh-

boring high-energy states are −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − kL=2Þ

p
e�iϕL and

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2L

p
e∓iϕL , which approach 0 when kL → 1, leaving

V0 as the dominant tunneling term. We focus on the region
ΩL ≪ Ω to avoid significant modification of the original
SOC band dispersion and also for the observation of
Josephson effects with weak tunneling.
Tunneling-phase-driven MSJJ.—In an ac JJ, a suddenly

applied voltage can induce an oscillation of supercurrents
between two superconductors. In our system, BECs at the
two band minima marked 2 and 5 are considered as two
superfluids and the detuning between them corresponds to
a voltage. A sudden change of δ induces an oscillation of
the BEC between the two minima, yielding a MSJJ whose
properties are described in the Supplemental Material [47].
Here we focus on the relative phase ϕL for the tunneling
element between 2 and 5, which is highly tunable in
experiments [44]. In contrast, such tunneling is a real
number for a real space JJ between two superconductors or
double-well BECs. A sudden change of the phase ϕL
(keeping δ constant) can induce a different type of
Josephson effect, i.e., a tunneling-phase-driven JJ.
In Figs. 3(a)–3(c) we show dynamics from simulations

of the GPE with a sudden change of the phase ϕL from an
initial ϕL0 to ϕLf ¼ 0. In panel (a) we plot the population
PiðtÞ at each momentum state for ϕL0 ¼ 0.4π. Clearly only
the states 2 and 5 at the two band minima are largely
populated while all other states can be neglected due to
their small initial populations, weak coupling to states 2
and 5, and high energies. Panel (b) shows the relative phase
between BECs in states 2 and 5. For ϕL0 ¼ 0.4π (blue solid
line), the phase varies through ½0; 2πÞ, representing a
Josephson type of oscillation, while for ϕL0 ¼ 0.3π (yellow
dashed line), the phase oscillates in a small range, showing
a plasma oscillation. The polarization hσzi exhibits sinus-
oidal oscillations for both cases [panel (c)].
Because the population of the BEC stays mainly at the

two band minima 2 and 5, we can neglect the other states to
derive an effective two-level model, yielding an equation of
motion [46,47]

i∂t

�
C2

C5

�

¼ ðHeff
0 þHeff

I Þ
�
C2

C5

�

; ð3Þ

where Heff
0 ¼ ð −kLδ=2−V0eiϕL

−V0e−iϕL
kLδ=2

Þ is the effective single-

particle Hamiltonian, andHeff
I ¼ 2gGðjC5j2

jC2j2Þ is the effec-
tive interaction term obtained through a variational approxi-
mation of the GPE. Generally, gG depends on jC2j2jC5j2 but
is approximately a constant when the interaction strength is

weak compared to ER, yielding gG ¼ ngð1 − k2LÞ. Note that
the coupling phaseϕL in Eq. (3) can be incorporated into the
relative phase between C2 and C5 through a simple phase
transformation; therefore, the quench of ϕL is mathemati-
cally equivalent to a quench of the relative phase between
condensates at two minima (2,5), although the latter is
experimentally impractical.
When the couplingV0 is strong, the dynamics of the BEC

are governed by single particle physics, yielding a linear
Rabi oscillation with period T ¼ π=ω, where the Rabi
frequency ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkLδ=2Þ2 þ jV0j2

p
. Such a simple formula

for the period does not apply when the tunneling V0 is
comparable to or weaker than the interparticle interactions,
although the two-level model still agrees reasonably well
with the GPE simulations, as shown in Fig. 3(d).We see that
the period is similar for interacting and single-particle cases
for a large coupling ΩL ¼ 0.025, but shows strong devia-
tions [see the sharp peak for the solid red line in Fig. 3(d)]
from the single particle curve for ΩL ¼ 0.015. For a very
large detuning δ (i.e., voltage), allT collapse to the same line
as the single particle case, as expected.
In the two-level approximation, we can choose the

normalization jC2j2 þ jC5j2 ¼ 1, and recast the equation
of motion, Eq. (3), as [47]

∂tz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sin ðϕ − ϕLfÞ; ð4Þ

(a) (b)

(c) (d)

FIG. 3. (a) Time evolution of the populations at different
momentum states for a tunneling-phase-driven MSJJ for
Ω ¼ 2.7, δ ¼ 0.014, ΩL ¼ 0.015, and ng ¼ 0.07. Evolutions
of phase difference (b) and polarization (c) for Josephson
oscillation (solid blue) and plasma oscillation (dashed orange).
(d) Oscillation period T versus δ when ϕL is quenched from ϕL0
to 0 at Ω ¼ 2.7. Circles are results from the GPE simulation,
while solid (ng ¼ 0.07) and dashed (single particle) lines are
from the two-level model. Different colors correspond to different
parameter sets: ΩL ¼ 0.015, ϕL0 ¼ 0.4π (blue); ΩL ¼ 0.025,
ϕL0 ¼ 0.4π (orange); and ΩL ¼ 0.015, ϕL0 ¼ 0.2π (red). Blue
and red dashed lines overlap (purple) since T is independent of
ϕL0 for the single particle case.
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∂tϕ ¼ gG
V0

zþ z
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p cos ðϕ − ϕLfÞ þ
kLδ
2V0

; ð5Þ

using the population difference z ¼ ðN2 − N5Þ=N and
relative phase ϕ ¼ θ2 − θ5, where Ni and θi are defined
through C2 ¼

ffiffiffiffiffiffi
N2

p
eiθ2 and C5 ¼

ffiffiffiffiffiffi
N5

p
eiθ5 . These two

classical equations characterize the essential dynamics
of MSJJs.
Figure 4(a) shows how the initial value ϕL0 affects the

dynamics. For a relatively small ϕL0, the classical trajectory
is a closed loop around a fixed point with a small amplitude
of z and a confined range of phase change Δϕ, showing a
plasma oscillation [17]. With increasing ϕL0, the ampli-
tudes for both ϕ and z increase. Beyond a critical ϕL0, ϕ
varies through ½0; 2πÞ, showing a Josephson oscillation.
The system returns to plasma oscillation around another
fixed point when ϕL0 exceeds another critical point. These
classical trajectories from the two-level model agree with
those from the GPE simulations in Fig. 4(b). Note that the
trajectories around two fixed points have opposite direc-
tions. In the single-particle case, these two fixed points
correspond to two opposite Zeeman fields for spin pre-
cession of the Rabi oscillation [47].
Strong interaction between atoms can dramatically

change the BEC dynamics and lead to a self-trapping
effect [17,22], where the oscillation amplitude of z is
strongly suppressed. We consider a symmetric oscillation
with δ ¼ 0. For a weak interaction of ng ¼ 0.07, the
oscillation of hσzi shows a perfect sinusoidal pattern (blue
line), as seen by the blue line Fig. 5(a) obtained from the
GPE simulation. When the interaction is doubled
ng ¼ 0.14, the oscillation amplitude is reduced and the
average hσzi in one period changes from 0 to a finite value
(orange line). For a larger but still practicable interaction of
ng ¼ 0.35, the oscillatory behavior disappears and the
condensate is locked at the initial band minimum because

of strong density interaction. Such nonlinear self-trapping
effects can also be captured in the classical trajectories in
the two-level model [Fig. 5(b)]. With increasing ng, the
initial plasma oscillation with a large variation of z becomes
the self-trapped Josephson oscillation with a small z
change.
Experimental consideration.—The periodic density

modulation for the stripelike ground state can be measured
using Bragg scattering, similar to the recent experiments for
observing supersolid stripe phases [55]. Consider a 87Rb
BEC confined in a quasi-1D harmonic trap. The Raman
lasers for generating SOC are incident at 45° with the x
axis, yielding an effective wave vector kR ¼ ð2π= ffiffiffi

2
p

λÞ
with λ ¼ 784 nm. The corresponding recoil energy
ER ¼ 2πℏ × 1.8 kHz; thus, the time and length units are
ℏ=ER ¼ 0.088 ms and 2π=kR ¼ 1109 μm, respectively.
The Raman coupling strength for SOC Ω ¼ 2.7ER; thus,
kL ¼ 0.738kR and the second pair of Raman lasers should
be incident at an angle θL ¼ 58:6° with respect to the x
axis. The s-wave scattering length of 87Rb is as ¼
100.86a0, where a0 is the Bohr radius. Considering a
particle number 104 to 106 and typical trapping frequencies
ωx ∼ 2π × 5 Hz and ωy ¼ ωz ∼ 2π × 75 Hz, one has the
average particle density n ∼ 1013 to 1014 cm−3 under
Thomas-Fermi approximation [45]. The effective interac-
tion strength can be evaluated through ng ¼ 4πℏ2asn=m ∼
0.07 to 0.48ER, resulting in the time period T ∼ 10 ms for
tunneling-phase-driven Josephson oscillations [Fig. 3(d)].
Discussion and conclusion.—Our two major proposed

concepts, a momentum-space JJ and a tunneling-phase-
driven JJ, may also be realized in other physical systems
where a double-well band dispersion with two almost
degenerate local band minima can be generated to ensure
the long life time of the BEC at different momenta [56]. For
instance, the double-well band dispersion may be realized
in optical superlattices with Raman assisted tunneling [57],
where two momentum minima can be coupled with addi-
tional Raman transitions. The double-well band dispersion
can be generalized to triple-well or even more multiple-
degenerate momentum states, and the coupling between

(a) (b)

FIG. 4. (a) Classical trajectories in the z-ϕ plane for
0 < ϕL0 ≤ π, with initial value of z at 0.434. (b) Same as
(a) but generated through the GPE simulation. Parameters are
ng ¼ 0.07, δ ¼ 0.008 (corresponding to initial polarization
0.434), Ω ¼ 2.7, and ΩL ¼ 0.015. The three colors correspond
to ϕL0 ¼ 0.2 (blue), 0.4 (orange), 0.8 (green), respectively. The
arrows denote the direction of each trajectory.

(a) (b)

FIG. 5. (a) Self-trapping effects from the GPE simulation. The
curves correspond to ng ¼ 0.07 (blue), 0.14 (orange), and 0.35
(green), for Ω ¼ 2.7, ΩL ¼ 0.03, ϕL0 ¼ 0.2π, and δ ¼ 0.
(b) Classical phase plane from the two-level model. The colors
are the same as in (a) except ng ¼ 0.1 for the red curve.
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neighboring minima may form a momentum-space optical
lattice [56], which can be considered as a Josephson
junction array [20] in momentum space. The linear
momentum discussed here can be generalized to orbital
angular momentum (OAM), and an OAM-space JJ may be
realized for a BEC on a ring utilizing recent proposals for
spin-OAM coupling [58–60] for cold atoms. The discrete-
ness of OAM states may induce interesting Josephson
effects that are different from those in continuous real or
momentum space. Finally, although absent in solid-state
superconductors, the proposed tunneling-phase-induced JJ
may be realized in real-space optical superlattices with
Raman assisted tunneling [57], where the phase for the
Raman tunneling may also be tuned.
In conclusion, we propose a new category of Josephson

effects in momentum space, which can be built in a spin-
orbit coupled BEC. In addition to traditional voltage-driven
Josephson effects, we introduce quenching of the tunneling
phase as a novel driving mechanism. Our work may
motivate further experimental and theoretical works for
studying MSJJs and provides a platform for exploring their
applications in building novel quantummechanical circuits.
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