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Topological superfluids protected by mirror and time-reversal symmetries are exotic states of matter
possessing Majorana Kramers pairs (MKPs), yet their realizations have long been hindered by the
requirement of unconventional pairing. We propose to realize such a topological superfluid by utilizing
s-wave pairing and emergent mirror and time-reversal symmetries in two coupled 1D ultracold atomic
Fermi gases with spin-orbit coupling. By stacking such systems into 2D, we discover topological and
Dirac-nodal superfluids hosting distinct MKP flat bands. We show that the emergent symmetries make the
MKPs and their flat bands stable against pairing fluctuations that otherwise annihilate Majorana pairs.
Exploiting new experimental developments, our scheme provides a unique platform for exploring MKPs
and their applications in quantum computation.
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Introduction.—Spin-orbit coupling (SOC) plays a crucial
role in many topological quantum phenomena of con-
densed matter physics [1,2]. In ultracold atomic gases, SOC
has been experimentally realized by coupling different
hyperfine ground states through counterpropagating
Raman lasers [3–13]. Due to their high controllability
and zero disorder, the spin-orbit coupled ultracold atomic
gases have opened a broad avenue for exploring novel
topological quantum matter. In particular, the cooperation
of three key ingredients, i.e., SOC, Zeeman coupling,
and s-wave pairing interaction, can produce effective p-
wave superfluids [14–16] that host Majorana excitations
[17–19]. Because of their non-Abelian braiding statistics
and potential applications in fault-tolerant quantum com-
puting [20], topological defects containing unpaired
Majorana modes have been extensively studied in solid-
state systems nowadays [21–37].
These superfluids with unpaired Majorana modes

belong to class D in the tenfold way of Altland-Zirnbauer
classification [38,39]. Without additional symmetries, the
coupling between two Majorana modes can lift their zero-
energy degeneracy. Time-reversal (TR) symmetry (T 2¼−1)
can, however, dictate them to form a Kramers doublet,
dubbed Majorana Kramers pair (MKP) [40–43].
Topological superfluids hosting protected MKPs belong
to a completely distinct symmetry class, i.e., the DIII or
mirror class [42]. Intriguingly, MKPs enjoy symmetry-
protected non-Abelian braiding statistics [44,45], which
may constitute advantages for quantum computing.
There have been several tantalizing proposals for real-

izing topological superconductors hosting MKPs in solid-
state materials [40–58], such as those proximitized devices
exploiting the unconventional s�-wave [41,58], dx2−y2-
wave [43], or spatially sign-switching pairing [21].
However, these schemes are challenging, as they strongly

rely on the presence of exotic pairing and its fine control in
materials [59]. In this context, ultracold atomic gases may
provide a more controllable platform for exploring topo-
logical superfluids hosting MKPs [42]. In contrast to
extrinsic proximity-induced superconductivity in solid-
state platforms, superfluid orders in ultracold atomic gases
are formed through intrinsic s-wave attractive interactions.
In particular, a superfluid phase may be destroyed by
quantum fluctuations in a 1D chain; therefore it is crucial to
exploit weakly coupled 1D chains or 2D or 3D arrays to
suppress quantum fluctuations. Yet, it has been shown that
couplings between identical class D (and even class BDI
[37]) chains induce edge pairing fluctuations that destroy
Majorana modes [60,61]. Thus, two questions naturally
arise. Can TR-invariant topological mirror superfluids be
realized in ultracold atomic gases with conventional s-wave
pairing? If so, can TR and mirror symmetries protect MKPs
from pairing fluctuations? In this Letter, we address these
two important questions by showing that the remarkable
physics of TR-invariant topological mirror superfluids and
associated MKPs can be realized in ultracold atomic gases
by utilizing experimentally accessible s-wave pairing and
synthetic 1D SOC [3–10]. Here are our main findings.
First, although the Zeeman field from Raman coupling in

synthetic SOC breaks TR symmetry in a Fermi gas,
effective TR and mirror symmetries emerge for two
coupled gases with opposite Zeeman fields (Fig. 1), which
can be realized by changing the beam profile of one Raman
laser from Gaussian to Hermite-Gaussian [62]. The emer-
gent TR and mirror symmetries, together with s-wave
pairing, can be exploited to realize TR-invariant topological
mirror superfluids [42].
Second, by tuning the Zeeman field strength and

chemical potential, our 1D system undergoes various phase
transitions between different phases and the topological
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superfluid characterized by a Z2 invariant and the emer-
gence of MKPs. Even though the SOC is 1D, our 2D
system exhibits both topological and Dirac-nodal [63]
superfluids hosting distinct flat bands of MKPs. This
extension strongly suppresses quantum fluctuations that
may destroy the two superfluid phases.
Third, as evidenced by our self-consistent calculations

[64–69], the degeneracies of MKPs and their flat bands are
symmetry protected against pairing fluctuations, which are
known to annihilate Majorana pairs for coupled 1D chains.
(All of these results also apply to the 3D case.) Therefore,
our scheme provides a simple experimentally feasible route
for realizing TR-invariant topological and Dirac-nodal
superfluids, paving the way for observing MKPs and
exploring their non-Abelian statistics [44,45] and interac-
tion effects [46,47].
Model.—Consider two coupled 1D Fermi gases of

ultracold atoms with the same SOC but opposite
Zeeman fields. (A double-well trapping potential along ŷ
is used to create this system.) As sketched in Fig. 1, the
SOC can be achieved by two counterpropagating Raman
lasers coupling two atomic hyperfine states j1i and j2i.
This setup is the same as those in previous experiments
[3–13], except that one laser beam is changed fromGaussian
to Hermite-Gaussian HG01 mode [62], and can be described
by the Hamiltonian hk ¼ ℏ2k2=2mþΩσz þ δσy þ 2αkσy
in a rotated basis with j1; 2i ¼ ðj↑i � ij↓iÞ= ffiffiffi

2
p

. Here k is
the quasimomentum in each gas, α is the SOC strength, δ is
the two-photon detuning, andΩ ¼ Ω0y exp ð−y2=w2Þ is the
position-dependent Raman coupling serving as the Zeeman
field. Given the antisymmetric HG01 beam, the Zeeman field
is opposite at the two gases, which is crucial for realizing an
emergent TR symmetry.
Taking into account the s-wave interaction induced

superfluidity, the physics of our 1D Fermi gas system
can be described by the Bogoliubov–de Gennes (BdG)
Hamiltonian [70] Hk ¼ Ψ†

kH
BdG
k Ψk=2 with

HBdG
k ¼ ½ξk þ 2α sin kσy − t⊥sx�τz þ Ωσzsz þ Δτx ð1Þ

expressed in the Nambu spinor basis Ψk ¼ ðϕk; iσyϕ
†
−kÞ.

Here ϕk ¼ ðck↑;1; ck↓;1; ck↑;2; ck↓;2ÞT with ckσ;s the fermion
annihilation operators; σ, s, and τ are Pauli matrices acting
on the fermion spin, double chain, and particle-hole spaces,
respectively; ξk ¼ −2t cos k − μ is the intrachain kinetic
energy with a chemical potential μ, t⊥ is the inter-chain
coupling, and δ ¼ 0 has been chosen for the detuning. The
lattice regularization of the free-space fermion kinetic
energy would not change any essential physics [70].
Importantly, the Zeeman field Ωσzsz is exactly opposite
for the two chains, and the s-wave pairing order para-
meter Δ must be self-consistently determined [64–69].
Diagonalizing the Hamiltonian [Eq. (1)], we obtain the
quasiparticle energy spectrum

EðkÞ ¼ �½ð2α sin k� t⊥Þ2 þ Ω2 þ Δ2 þ ξ2k

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2 þ ξ2kÞΩ2 þ ð2α sin k� t⊥Þ2ξ2k

q
�1=2; ð2Þ

with twofold degeneracies at k ¼ 0 and π due to an
emergent TR symmetry, as we elaborate below.
Symmetry and invariant.—The model [Eq. (1)] has three

independent symmetries that govern the underlying phys-
ics. First, there is an intrinsic particle-hole symmetry
reflecting the BdG redundancy: PHBdG

k P−1 ¼ −HBdG
−k with

P ¼ τyσyK and K the complex conjugation. Second, even
though the TR symmetry is explicitly broken by the
Zeeman field within each chain, Eq. (1) is still invariant
under TR followed by chain inversion, i.e.,

T̃ HBdG
k T̃ −1 ¼ HBdG

−k ; T̃ ¼ isxσyK: ð3Þ
Given that T̃ 2 ¼ −1, such an emergent TR symmetry
dictates the Kramers degeneracies found in the spectrum
[Eq. (2)] at k ¼ 0 and π. Note that the composite operation
of P and T̃ also leads to a chiral symmetry: CHBdG

k C−1 ¼
−HBdG

k with C ¼ PT̃ . Third, the setup has a mirror
symmetry such that the two chains are the mirror images
of each other, i.e.,

MHBdG
k M−1 ¼ HBdG

k ; M ¼ isxσy: ð4Þ
Since the mirror symmetry with M2 ¼ −1 is a spatial
symmetry, naturally ½M;O� ¼ 0 with O ¼ P, T̃ and C.
In light of the above symmetry analysis, the Hamiltonian

[Eq. (1)] belongs to both the DIII class [38,39] and the
mirror class [42] in topological classification. It follows that
a Z2 index ν [70,71] and a mirror winding number γm, with
ν ¼ γm mod 2 [42], can both be used for characterizing the
band topology of model [Eq. (1)].
We find that the transitions between topologically dis-

tinct phases occur at the phase boundary where

ξ2k þ Δ2 ¼ Ω2; 4α2sin2k ¼ t2⊥: ð5Þ
For t⊥ ¼ 0, the quasiparticle gap closes at k ¼ 0, and the
phase boundary reduces to that of single-chain superfluids
[22,23]. For a finite t⊥, the quasiparticle gap closes at a
finite k, and the critical Zeeman fields read

(a) (b)

FIG. 1. Schematics of proposed experimental setups. (a) 1D
SOC generated by two counterpropagating Raman lasers along
ex, i.e., one HG01 beam (red arrow) polarized along ez with
frequency ω1 and one Gaussian beam (blue arrow) polarized
along ey with frequency ω2. The green line shows the resulting
Zeeman field along ey. (b) Two-photon process induced by the
two Raman lasers in (a) with a detuning δ.
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Ω� ¼ ½ð2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2⊥=4α2

q
� μÞ2 þ Δ2�1=2: ð6Þ

Applying the established formulas for ν [70,71] and γm
[42] to Eq. (1), we conclude that

ν ¼ γm ¼
�
1 if Ω− < jΩj < Ωþ;
0 otherwise:

ð7Þ

Our model in the nontrivial regime realizes not only a
TR-invariant topological superfluid but also the first topo-
logical mirror superfluid [42] in degenerate gases.
Self-consistent phase diagram.—In ultracold atomic

gases, the local s-wave pair potential in real space must
be determined in a self-consistent manner [64–69], together
with the quasiparticle energies and wave functions. In our
numerical calculations [70], the chemical potential is fixed
without loss of generality, and the open boundary condition
is used for the purpose of observing MKPs. We choose
L ¼ 120 as the length of chain, t as the energy unit, and
hΔi ¼ P

ijΔij=L as the pairing strength.
Figure 2(a) plots the phase diagram in the Ω-μ plane,

which is symmetric with respect to μ ¼ 0 and Ω ¼ 0.
Evidently, the numerical phase boundaries are in good
harmony with those determined by Eq. (5). In total, there
are five distinct phases: the normal superfluid, topological
superfluid, metal with SOC, polarized insulator, and trivial
vacuum. The vacuum state occurs when jμj is too large to
cross the single-particle bands. The system becomes the
polarized insulator near jμj ¼ 0 if the Zeeman field strength
jΩj is sufficiently large; each lattice site per chain is occupied
by one fermion of the same polarization. At relatively
smaller jΩj and jμj, superfluidity spontaneously emerges
with a finite bulk pairing gap for quasiparticle excitations. In
this regime, whereas it is the normal superfluid without any

boundary zero mode if both jΩj and jμj approach zero, it
becomes the topological superfluid with two degenerate zero
modes per boundary, i.e., the MKP, if jμj approaches to the
original band degeneracies and if jΩj > Ω− as required in
Eq. (7). As jΩj further increases, the superfluidity gradually
vanishes, and themetal phase emerges with an excitation gap
scales linearly with 1=L.
Figure 2(b) with μ ¼ −2 features the most appealing part

of the phase diagram, where there are two successive phase
transitions as Ω increases from 0. The first transition occurs
at Ω ¼ Ω−: the normal superfluid turns to the topological
superfluid with the emergence of one localized MKP per
boundary, as shown in Fig. 2(c). As Ω becomes stronger,
the pairing strength hΔi becomes weaker. Eventually at the
second transition, hΔi vanishes and the system enters into
the metal phase with gapless single-particle excitations.
2D topological superfluids.—By stacking our double

chains, we can obtain exotic 2D and 3D topological
superfluids protected by the emergent TR and mirror
symmetries. The extension to higher dimensions can
suppress quantum fluctuations and stabilize long-range
pairing orders. We focus on the 2D case [70], and the
3D generalization is straightforward. The staggered
Zeeman field switches sign between neighboring chains
along ŷ. This setup can be described by the BdG
Hamiltonian

HBdG
k ¼ ½ξkx þ 2α sin kxσy − ðt1 þ t2 cos kyÞsx

− t2 sin kysy�τz þ Ωszσz þ Δτx; ð8Þ
where t1 and t2 are the alternating interchain couplings
along ŷ. Such a system has an emergent property

T̃ HBdGðkx; kyÞT̃ −1 ¼ HBdGð−kx; kyÞ; ð9Þ
i.e., the system respects the TR symmetry in Eq. (3) and
belongs to class DIII with a Z2 invariant νky for any ky,
which is an anomalous pumping parameter [44].
Consequently, there can be three distinct phases for

Eq. (8). Whereas the superfluid is normal if νky ¼ 0 for any
ky, an unprecedented topological superfluid emerges if
νky ¼ 1 for any ky. Remarkably in the topological phase,
there emerges a flat band of MKPs at the edge along ŷ,
because there is a MKP corresponding to the nontrivial Z2

invariant for any ky. (This edge flat band is a consequence
of the bulk topological property, and the band flatness is
protected by the TR and mirror symmetries, although the
edge flat band itself may be trivial [72] if treated as a 1D
system.) Intriguingly, if ν0 ≠ νπ , a nodal superfluid
emerges. As the Z2 invariant changes from ky ¼ 0 to
ky ¼ π, the bulk gap must close at least one ky in between 0
and π, separating the ν ¼ 0 and ν ¼ 1 regimes, and a flat
band of MKPs emerge between the projected nodes [63] at
the edge along ŷ.
Figure 3(a) illustrates a representative phase diagram in

the Ω-Δ plane. Indeed, all three phases emerge and the

FIG. 2. (a) Phase diagram in the Ω-μ plane, symmetric with
respect to μ ¼ 0 and Ω ¼ 0. The contour plot shows the site-
averaged pairing hΔi in the normal superfluid (N), topological
superfluid (T), metal with SOC (M), polarized insulator (I), and
trivial vacuum (V). The dotted red lines are the phase boundaries
determined by Eq. (5). (b) Phase transitions along the white
dotted line in (a). The black solid (red dotted) lines denote the first
(second) quasiparticle excitation states (ES) in the spectrum, both
of which are twofold degenerate. (c) Probability distributions of
the left (L) and right (R) MKPs at the red cross in (a).

P
iPLðiÞ ¼P

iPRðiÞ ¼ 2 are the hallmarks of MKPs. α ¼ 1 and t⊥ ¼ 0.5 are
used in (a)–(c).
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nodal superfluid intervenes the normal and topological
ones. Surprisingly, we find that the nodes are Dirac points
with linear dispersions and topological protections.
Diagonalizing Eq. (8) yields the phase boundaries and
the Dirac point positions, as determined by

ξ2kx þΔ2¼Ω2; 4α2sin2kx¼ t21þ t22þ2t1t2cosky: ð10Þ
The Dirac points are twofold degenerate and come in
multiples of four, as dictated by the T̃ and M symmetries
that respectively flip kx and ky. Moreover, any loop
enclosing one such Dirac point has a total winding number
γt ¼ �1 [63], protected by an emergent chiral symmetry

C̃HBdG
k C̃−1 ¼ −HBdG

k ; C̃ ¼ τyσy: ð11Þ
Figure 3(b) displays the four Dirac points and their γts
accordingly. Figures 3(c) and 3(d) contrast the MKP edge
flat bands in the Dirac-nodal and topological superfluids.
Discussion.—It is instructive to consider the stability of

MKPs and their flat bands in our proposed scheme. For an
array of topological superfluids without the T̃ and M
symmetries, it is known that Majorana interactions sponta-
neously produce nonuniform pairing fields Δjeiϕj and edge
supercurrent loops [61]. Since the phase fluctuations cannot
be gauged away, the Majorana modes can be gapped out in
pairs. Neglecting long-range interactions, the Majorana
annihilation is governed by the nearest-neighbor Josephson
couplings as follows [60]:

δH ¼ −
X
hiji

½J0 cosϕij þ iJijγiγj sinðϕij=2Þ�; ð12Þ

with J0, Jij > 0 and ϕij ¼ ϕi − ϕj. While the first term
favors a global phase coherence, the second term splits the
Majorana zero modes through phase fluctuations.
In sharp contrast, the MKP flat bands of our system are

robust against such phase fluctuations. This can be best
understood from the symmetry perspective. Under the M
operation, the local pairing term Δieiϕici↑ci↓ becomes
Δieiϕi ciþ1↑ciþ1↓ since the sublattice and spin indices in
Eq. (8) are simultaneously flipped. For the Josephson
coupling, the Jij term must vanish as ϕi ¼ ϕiþ1 is dictated
by mirror symmetry.
Our self-consistent calculations also agree with such a

symmetry argument. Figure 4(a) plots the BdG spectrum
for a 100 × 8 lattice model of Eq. (8). Consistent with
Fig. 3(a), the system undergoes two transitions as the
Zeeman field increases: from a normal superfluid to a
topological one and eventually to a metal phase with
hΔi ¼ 0. (Dirac points are absent due to the finite size
effect.) The topological phase hosts eightfold degenerate
zero modes on the boundary along ŷ, forming a MKP flat
band that is also stable against the t1-t2 anisotropy. These
remarkable features suggest that our proposed scheme is
superior to previous ones.
Finally, a few comments are in order on relevant

experiments. In the 2D setup, the Zeeman field switches
signs between neighboring chains of distance b. This can
be realized through the periodic modulation Ω1 ∼
cos ðπy=bÞ for one Raman laser. Such a modulation can
be produced by a digital micromirror device [70,73,74],
which can generate an arbitrary modulation of laser
intensity. This setup can be generalized to a 3D lattice
with Ω1 ∼ cos ðπy=bÞ cos ðπz=cÞ, where a boundary MKP
flat band is anticipated. Our scheme of restoring TR
symmetry via a spatial reflection can be generalized to
various different systems, where the SOCs have been
realized for other types of pseudospin states [75–78].
The MKPs can be experimentally detected using spa-

tially resolved radio-frequency spectroscopy [70,79–83],
which measures the local density of states, similar to
scanning tunneling microscope. Different from a single

FIG. 3. (a) Phase diagram in the Ω-Δ plane for the 2D model
[Eq. (8)]. The red, green, and blue regions denote the normal (N),
topological (T), and Dirac-nodal (D) superfluids, respectively.
(b) Bulk quasiparticle spectrum for the Dirac superfluid labeled
by the red star in (a). Each Dirac point is indexed by a winding
number γt ¼ �1. (c) and (d) Quasiparticle spectrum with MKP
edge flat bands under open boundary condition for the Dirac and
topological superfluids labeled in (a). t1 ¼ t2 ¼ 0.5, α ¼ 1, and
μ ¼ −2 are used in (a)–(d).
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FIG. 4. (a) Self-consistent quasiparticle spectrum for the
100 × 8 lattice model. The red lines denote the eight lowest
quasiparticle excitation states. (b) Vector plot of the local pairing
fields Δjeiϕj for Ω ¼ 1.1. The length (direction) of each arrow
denotes the strength (phase) of the local pairing field.
t1 ¼ t2 ¼ 0.5, α ¼ 1, and μ ¼ −2 are used in (a) and (b).
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Majorana mode, the intrinsic twofold degeneracy of a MKP
can be further affirmed from the energy splitting and spatial
separation of two Majorana modes due to symmetry
breaking [70], which can be induced by the imbalance
ofΩ between the two chains. Our results not only provide a
simple experimental scheme for realizing mirror- and TR-
invariant topological and Dirac-nodal superfluids, but also
establish a unique platform for exploring MKPs and their
applications in quantum computation.
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Note added.—Near the submission of this manuscript, we
became aware of an independent work [84] that explores
MKPs in double semiconductor nanowires with proximity-
induced s-wave pairing and ad hoc opposite Zeeman fields.
While pairing fluctuation, mirror symmetry, Dirac phase,
and flat band are not discussed in Ref. [84], the results
based on the emergent time-reversal symmetry in the two
works agree with each other.
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