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Second-order topological superconductors host Majorana corner and hinge modes in contrast to
conventional edge and surface modes in two and three dimensions. However, the realization of such
second-order corner modes usually demands unconventional superconducting pairing or complicated
junctions or layered structures. Here we show that Majorana corner modes could be realized using a 2D
quantum spin Hall insulator in proximity contact with an s-wave superconductor and subject to an in-plane
Zeeman field. Beyond a critical value, the in-plane Zeeman field induces opposite effective Dirac masses
between adjacent boundaries, leading to one Majorana mode at each corner. A similar paradigm also
applies to 3D topological insulators with the emergence of Majorana hinge states. Avoiding complex
superconductor pairing and material structure, our scheme provides an experimentally realistic platform for
implementing Majorana corner and hinge states.
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Introduction.—Majorana zero energy modes in topo-
logical superconductors and superfluids [1–4] have
attracted great interest in the past two decades because
of their non-Abelian exchange statistics and potential
applications in topological quantum computation [5,6].
A range of physical platforms [7–18] in both solid state
and ultracold atomic systems have been proposed to host
Majorana modes. In particular, remarkably experimental
progress has been made recently to observe Majorana zero
energy modes in s-wave superconductors in proximity
contact with materials with strong spin-orbit coupling,
such as semiconductor thin films and nanowires, topologi-
cal insulators, etc., [19–24]. In such topological super-
conductors and superfluids, Majorana zero energy modes
usually localize at 2D vortex cores or 1D edges, where the
Dirac mass in the low-energy Hamiltonian changes sign.
Recently, a new class of topological superconductors,

dubbed as higher-order topological superconductors, has
been proposed [25–38]. In contrast to conventional topo-
logical superconductors, rth-order (r ≥ 2) topological
superconductors in d dimensions host (d − r)-dimensional
Majorana bound states, rather than d − 1-dimensional
gapless Majorana excitations. For example, in 2D sec-
ond-order topological superconductors, the edge modes
manifest themselves as 0D Majorana excitations localized
at the corners, instead of 1D edges, giving rise to Majorana
corner modes (MCMs). A variety of schemes have been
proposed recently to implement MCMs, such as p-wave
superconductors under magnetic field [26], 2D topological
insulators in proximity to high temperature superconduc-
tors (d-wave or s�-wave pairing) [29–31], π-junction
Rashba layers [34] in contact with s-wave superconductors.

However, those schemes demand either unconventional
superconducting pairings or complicated junction or lattice
structures, which are difficult to implement with current
experimental technologies.
In this Letter, we propose that MCMs can be realized

with a simple and experimentally already realized hetero-
structure [39–42] composing of an s-wave superconductor
in proximity contact with a quantum spin Hall insulator
(QSHI) and subject to an in-plane Zeeman field, as
sketched in Fig. 1. Here we consider a simple square
lattice. At each edge of the 2D QSHI, there are two helical
edge states with opposite spins and momenta, which thus
support a proximity-induced s-wave superconducting pair-
ing, resulting in a quasiparticle band gap for the helical
edge mode spectrum [39–42].

FIG. 1. Illustration of a heterostructure composing of a quan-
tum spin Hall insulator on top of an s-wave superconductor and
subject to an in-plane Zeeman field. The spheres at four corners
represent four Majorana zero energy modes.
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Because of different spin-orbit coupling at adjacent
edges, an in-plane Zeeman field induces quite different
effects on adjacent edges. Across a critical Zeeman field,
the quasiparticle band gap along one edge first closes then
reopens, indicating a topological phase transition, but
remains unaffected for adjacent edges. Before the phase
transition, the Dirac mass term in the low-energy effective
Hamiltonian for the helical edge states has the same sign for
two adjacent edges. After the topological phase transition,
the Dirac mass term reverses its sign at the corner
connecting two edges, resulting in MCMs. In contrast,
the corner Dirac mass sign change in previous schemes
originates from the sign change of the pairing order through
unconventional superconducting pairing. There is only one
MCM at each corner due to the time-reversal symmetry
breaking, instead of Majorana Kramers pairs [29,30].
Applying similar physics to three dimensions, we find

that second-order topological superconductor can be imple-
mented in a 3D strong topological insulator, where the
interplay between s-wave pairing and Zeeman field (not
necessarily in-plane) gives rise to four domain walls on the
edges between two neighboring surfaces, yieldingMajorana
hinge modes.
Physical system and model Hamiltonian.—Consider a

QSHI in proximity contact with an s-wave superconductor
and subject to a Zeeman field h (see Fig. 1). The four edges
of a square sample are labeled by i, ii, iii, iv. The physics of
the heterostructure can be described by an effective
Hamiltonian [29]

HðkÞ ¼ 2λx sin kxσxszτz þ 2λy sin kyσyτz

þ ðξkσz − μÞτz þ Δ0τx þ h · s; ð1Þ

under the basis Ĉk ¼ ðck;−isyc†−kÞT with ck ¼ ðck;a;↑;
ck;b;↑; ck;a;↓; ck;b;↓ÞT . Here λi is the spin-orbit coupling
strength, Δ0 denotes s-wave superconducting order param-
eter induced by proximity effect, ξk ¼ ϵ0 − 2tx cos kx −
2ty cos ky with 2ϵ0 being the crystal-field splitting energy
and ti the hopping strength on the square lattice, and μ is the
chemical potential. Three Pauli matrices σ, s and τ act on
orbital (a, b), spin (↑, ↓) and particle-hole degrees of
freedom, respectively. For simplicity of the presentation,
we focus on the μ ¼ 0 case, where simple analytic results
for edge modes can be obtained.
In the absence of superconducting pairing and Zeeman

field, the Hamiltonian (1) is invariant under the time-reversal
T ¼ isyK and space-inversion I ¼ σz operations, where K
is the complex-conjugation operator. Here the band topology
can be characterized by a Z2 topological index protected
by T symmetry or an equivalent Z index for the spin Chern
number [43]. The system is a QSHI in the band inverted
region ½ϵ20 − ð2tx þ 2tyÞ2�½ϵ20 − ð2tx − 2tyÞ2� < 0. With the
open boundary condition, there are two helical edge states

with opposite spins and momenta propagating along each
edge in the QSHI phase [1,2].
Topological phase diagram and MCMs.—In the pres-

ence ofΔ0, a finite quasiparticle energy gap is opened in the
edge spectrum for two helical edge states due to the s-wave
pairing. The in-plane Zeeman field hx has different effects
on the single particle edge spectra (i.e., Δ0 ¼ 0) along the x
and y directions: it can (cannot) open the gap along the kx
(ky) direction [44]. Such anisotropic effect of hx leads to
very different physics whenΔ0 ≠ 0. Along the kx direction,
the quasiparticle band gap first closes [Fig. 2(a)] at the
critical point hxc ¼ Δ0 and then reopens with increasing hx,
indicating a topological phase transition. While along the
ky direction, the quasiparticle band gap does not close [44].
The difference between the edge spectra drives the hetero-
structure to a second-order topological superconductor.
The emergence of MCMs after the topological phase

transition is confirmed by the numerical simulation of
corresponding lattice tight-binding model in real space, as
shown in Figs. 2(b), 2(c). Before the topological phase
transition [Fig. 2(b)], there are no zero energy bounded
states localized at edges. After the in-plane Zeeman field
exceeds the critical point hxc, four zero energy MCMs
emerge at each corner of the square sample [Fig. 2(c)]. The
emergence of MCMs is independent of the underlying
geometry of the sample. For example, in Fig. 2(d), a similar
result is observed in a equilateral right triangular sample.
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FIG. 2. (a) Quasiparticle bands with edge spectrum (red lines)
for open boundary conditions along the y direction. The gap for
edge spectrum closes at hx ¼ Δ0 ¼ 0.4. (b) Density distributions
of the edge bound states (red dots in the inset) for a trivial
superconductor, where we have chosen hx ¼ 0.0, Δ0 ¼ 0.4.
(c)–(d) Density distributions of MCMs in different geometries.
The radii of the blue disks are proportional to local density. The
insets show the energy levels for hx ¼ 0.8 and Δ0 ¼ 0.4. In both
Fig. 2 and Fig. 3, tx ¼ ty ¼ λx ¼ λy ¼ 1.0 and ϵ0 ¼ 1.0.
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In this case, there are only two MCMs at two left corners
due to the orientation of the hypotenuse edge that leads to
different effects of the in-plane Zeeman field.
To examine the topological characterization of MCMs,

we further calculate the Majorana edge polarizations pedge;y
x

and pedge;x
y using the Wilson loops on a cylindrical

geometry [45,46]. Majorana edge polarization at the

y-normal edge is defined by pedge;y
x ¼ PNy=2

iy¼1 pxðiyÞ, where
Ny is the number of unit cells along y, and the polarization

distribution is pxðiyÞ ¼ ð1=NxÞ
P

j;kx;β;n j½unkx �iy;β½ν
j
kx
�nj2νjx.

Here, ½νjkx �
n represents the nth component of the jth eigen-

vector corresponding to theWannier center νjx of theWannier
Hamiltonian HWx

¼ −i lnWx with Wx the Wilson loop
operator [44]. ½unkx �iy;β is the ðiy; βÞ-th component of occupied
state junkxiwith iy and β being the site index and the internal
degrees of freedom, respectively. Similarly, we can define
Majorana edge polarization pedge;x

y . In the MCM phase, only
the Wannier spectra νx contain two half-quantized Wannier
values, as shown in Fig. 3(a), implying that the edge
polarizations occur only along the y-normal edges but not
the x-normal edges. Such an observation has been numeri-
cally verified by distributions of localized edge polarization
along y [see Fig. 3(b)], and zero edge polarization distribu-
tions along x. This further leads to half quantization ofpedge;y

x

and vanishing pedge;x
y , as demonstrated in Fig. 3(c).

We remark that the above topological characterizations
show that the MCM phase in our system falls into the class
of extrinsic higher-order topological phases distinguished
by gap closings of the edge spectra [45] on a cylindrical
geometry, instead of bulk spectra on a torus geometry for
intrinsic higher-order phases. However, the MCMs cannot
be annihilated by perturbations without closing the edge
energy gap [44].
Low-energy theory on edges.—All above numerical

results can be explained by developing an effective
low-energy theory on edges. With both Δ0 and hx, the
Hamiltonian HðkÞ possesses both inversion symmetry
and particle-hole symmetry PHðkÞP−1 ¼ −Hð−kÞ, but
breaks the time-reversal symmetry, where P ¼ τxK.
Without loss of generality, we assume a positive in-
plane Zeeman field applied along x direction, i.e.,
hx > 0 and hy ¼ hz ¼ 0. The eigenenergies of HðkÞ
are EðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λx sin kxÞ2 þ ðς� hxÞ2

p
, where ς ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2k þ ð2λy sin kyÞ2 þ Δ2
0

q
and each of them is twofold

degenerate. For large hx, the system must be a normal
superconductor, which becomes gapless for moderate hx.
When hx is small, the low-energy effective Hamiltonian

can be obtained through the lowest order expansion with
respect to k at Γ point

HeffðkÞ ¼ ðϵþ txk2x þ tyk2yÞσzτz þ 2λxkxσxszτz

þ 2λykyσyτz þ Δ0τx þ hxsx; ð2Þ

where ϵ ¼ ϵ0 − 2tx − 2ty < 0 is assumed for topologically
nontrivial QSHI.
Assuming an open-boundary condition along the x direc-

tion for edge i, we can replace kx with −i∂x and rewrite
HeffðkÞ ¼ H0ð−i∂xÞ þHpðkyÞ with H0¼ðϵ−tx∂2

xÞσzτz−
2iλx∂xσxszτz, and Hp¼tyk2yσzτzþ2λykyσyτzþΔ0τxþhxsx.
When Δ0 is small comparing to the energy gap, we can
treatHp as a perturbation and solveH0 to derive the effective
edgeHamiltonian for edge i. Assume thatΨa is a zero energy
solution for H0 bounded at edge i, σyszτzΨa is also the
eigenstate forH0 due tofH0; σyszg ¼ 0.We choose thebasis
vector ζβ for Ψa satisfying σysz ζβ ¼ −ζβ, where ζ1 ¼
j−;þ;þi, ζ2 ¼ jþ;−;þi, ζ3 ¼ j−;þ;−i, ζ4 ¼ jþ;−;−i
are eigenstates of σyszτz. Under this basis, the effective low-
energy Hamiltonian for the edge becomes Hedge;i ¼
2iλyszτz∂y þ Δ0τx with the topology characterized by a Z
invariant [47]. Similarly, we obtain the low-energy
Hamiltonian for every edge

Hedge;j ¼ −iλjszτz∂lj þ Δ0τx þ hjsx: ð3Þ

Here the parameters are λj ¼ f−2λy; 2λx; 2λy;−2λxg, lj ¼
fy; x; y; xg, and hj ¼ f0; hx; 0; hxg for j ¼ i–iv edges.
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From the effective edge Hamiltonian (3), we see that the
superconducting order induces quasiparticle gaps for all
helical edge states regardless of Zeeman fields since
fszτz; τxg ¼ 0. On the other hand, Eq. (3) indicates that
the in-plane Zeeman field hx only opens a gap on two
parallel edges (ii and iv), but keeps two perpendicular edges
(i and iii) untouched [44].
When Δ0 ¼ 0, the low-energy edge Hamiltonian pos-

sesses two zero-energy bound states on edge i: Ψ1ðxÞ ¼
A1ðsin αxÞe−ðλx=txÞxðζ1 þ ζ2Þ and Ψ2ðxÞ ¼ A2ðsin αxÞ
e−ðλx=txÞxðζ3 þ ζ4Þ, where α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðλ2x=t2x þ hx=tx þ ϵ=txÞ

p
and A1ðA2Þ is the normalization constant. Similarly, there
are two zero energy bound states localized at edge iii,
which are confirmed by real space numerical simula-
tion [44].
After a unitary transformationU ¼ 1 ⊕ ð−isyÞ, the edge

Hamiltonian reads

H0
edge;j ¼ −iλjsz∂lj þ Δ0sxτz þ hjsx; ð4Þ

on the rotated basis χ1 ¼ j þ 1ij þ 1i, χ2 ¼ j þ 1ij − 1i,
χ3 ¼ j − 1ij þ 1i, χ4 ¼ j − 1ij − 1i, which are eigenstates
of szτy. For edge i, the Hamiltonian H0

edge;i has two
decoupled diagonal blocks with Dirac masses Δ0 þ hx
and hx − Δ0, respectively. While for edge ii, Dirac masses
are the same Δ0 for two blocks. When ðΔ0 − hxÞΔ0 < 0
(i.e., hx > Δ0), the Dirac masses on edges i and ii have
opposite signs, leading to the emergence of a localized
mode at the intersection of two edges, which is the MCM
observed numerically in Fig. 2(c). At the corner between
edges i and ii, the MCM can be obtained from the zero-
energy wave function

Φðx; yÞ ∝
�
e−ðjΔ0−hxj=2λyÞjy−y0jðχ3 − iχ4Þ ðedge iÞ;
e−ðΔ0=2λxÞjx−x0jðχ3 − iχ4Þ ðedge iiÞ;

ð5Þ

where the corner locates at ðx0; y0Þ. We see that MCMs
could have different density distributions along different
directions when jΔ0 − hxj=λy ≠ Δ0=λx.
For the triangle geometry in Fig. 2(d), the effect of the in-

plane Zeeman field on the hypotenuse edge can be studied
by projecting it to the direction of the Zeeman field, which
shows that the Zeeman field acts uniformly on the
hypotenuse and upper edges. Consequently, there is no
kink of Dirac mass at that corner, i.e., no MCM. Generally,
such an argument applies to all geometric configurations
with odd edges (e.g., a square with a small right triangle
removed at a corner), which is consistent with bulk spectra
because the particle-hole symmetry demands that zero-
energy modes must be lifted pairwise.
For a general form of the in-plane Zeeman field, MCMs

emerge in the region
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q
> Δ0. However, an out-of-

plane Zeeman field (hzsz term) does not induce MCMs
because the helical edge states of QSHIs remain gapless for

any hz and hz affects each edge in the same way [44].
Finally, for a nonzero chemical potential μ ≠ 0, the
spectrum is more complicated [44], and MCMs still exist
for hx >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

0

p
with bulk spectrum being gapped. The

phase diagram with a finite μ is shown in Fig. 3(d).
Majorana hinge modes in three dimensions.—Similar

physics also applies to three dimensions. Consider a 3D
topological insulator described by theHamiltonianHTðkÞ ¼
ξ0kσzs0 þ

P
i λi sin kiσxsi with ξ0k ¼ m0 þ

P
i ti cos ki,

which respects both time reversal and inversion symmetries.
For 1 < jm0j < 3, HTðkÞ represents a 3D topological
insulator that possesses surface Dirac cones with gapped
bulk spectrum protected by I and T symmetries. In the
presence of an s-wave superconducting order Δ0 and a
Zeeman field,

H3DðkÞ ¼ ξ0kσzτz þ λx sin kxσxsxτz þ λy sin kyσxsyτz

þ λz sin kzσxszτz þ Δ0τx þ h · s: ð6Þ

For Δ0 ≠ 0, jhj ¼ 0, the surface states are gapped and the
system is a trivial superconductor. When hx > 0,
hy ¼ hz ¼ 0, the in-plane Zeeman field hx breaks the time
reversal symmetry in the x direction, generating a class-D
superconductor. Tuning hx > Δ0, we observe the gapless
chiral Majorana hinge modes propagating along the z
direction as shown in Fig. 4. Such a 3D second-order
topological superconductor can be characterized by a Z
invariant [47].
Figure 4(a) shows the energy spectrum with open

boundary conditions along x and y directions, where the
chiral Majorana hinge modes (each twofold degenerate)
emerge in the bulk energy gap. The combination of the
Zeeman field and the superconductor order gives rise to
four domain walls at which the Dirac mass sign changes.
Because of the inversion symmetry, the chiral modes at
diagonal hinges propagate along opposite directions, as
illustrated in Fig 4(b). We remark that the requirement of
in-plane Zeeman field can be released in three dimensions
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FIG. 4. (a) Quasiparticle spectrum along kz with open boundary
conditions along the x and y directions. (b) Majorana hinge
excitations in a 3D second-order topological superconductor.
Parameters are tx ¼ ty ¼ tz ¼ λx ¼ λy ¼ λz ¼ 1.0, Δ0 ¼ 0.3,
hx ¼ 0.6, and m0 ¼ 2.0.
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and the direction of the Zeeman field can be used to control
the directionality of the hinge modes. Specifically, when
the Zeeman field lies along the y (z) direction and hy > Δ0

(hz > Δ0), the chiral Majorana hinge modes propagate
along the xðyÞ direction with periodic boundary conditions.
Discussion and conclusion.—InAs/GaSb quantum wells

are 2D Z2 QSHIs with large bulk insulating gaps up to
∼50 meV, and significant experimental progress has been
made [48–51] recently to observe their helical edge states.
Superconducting proximity effects in InAs/GaSb quantum
wells were also observed in experiments [39–41]. In
particular, edge-mode superconductivity due to proximity
contact with an s-wave superconductor has been detected
through transport measurement [40], and giant supercurrent
states have been observed [41]. The in-plane Zeeman field
could be realized using an in-plane magnetic field due to
the relatively large g factor for InAs/GaSb quantum wells
[52]. By engineering a suitable quantum device, zero-bias
peaks for MCMs should be observable in transport or STM
types of experiments.
Another potential material is the monolayer WTe2 [53]

that has been confirmed as a QSHI in recent experiments
[54,55]. When proximate to superconductors, a proximity-
induced superconducting gap of the order of ∼0.7 meV
[42] emerges. To achieve a comparable spin Zeeman
splitting, an in-plane magnetic field H ∼ 0.3–3 T is
required, given the Landé g factor ranges from 4.5
[54,56] to larger than 44 [57] in WTe2, depending on
the direction of the applied fields. Based on the afore-
mentioned parameters, s-wave superconductor NbN can be
used for the device fabrication, given its both high
transition temperature, Tc ∼ 12 K, and high critical field,
for example, Hc > 12 T at 0.5 K [58]. For Majorana hinge
modes in three dimensions, effective Zeeman fields could
be induced by doping magnetic impurities into 3D topo-
logical insulators.
In conclusion, we have shown that a heterostructure

composing of QSHI=s-wave superconductor can become a
second-order topological superconductor with MCMs in
the presence of an in-plane Zeeman field. Because neither
exotic superconducting pairings nor complex junction
structures are required, our scheme provides a simple
and realistic platform for the experimental study of the
non-Abelian Majorana corner and hinge modes.
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