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Moiré superlattices in twisted bilayer graphene and transition-metal dichalcogenides have emerged as a
powerful tool for engineering novel band structures and quantum phases of two-dimensional quantum
materials. Here we investigate Moiré physics emerging from twisting two independent hexagonal optical
lattices of atomic (pseudo-)spin states (instead of bilayers) that exhibit remarkably different physics from
twisted bilayer graphene. We employ a momentum-space tight-binding calculation that includes all range
real-space tunnelings and show that all twist angles θ ≲ 6° can become magic and support gapped flat
bands. Because of the greatly enhanced density of states near the flat bands, the system can be driven to
superfluidity by weak attractive interaction. Strikingly, the superfluid phase corresponds to a Larkin-
Ovchinnikov state with finite momentum pairing that results from the interplay between flat bands and
interspin interactions in the unique single-layer spin-twisted lattice. Our work may pave the way for
exploring novel quantum phases and twistronics in cold atomic systems.
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Introduction.—Twisting two weakly coupled adjacent
crystal layers has been employed as a powerful tool for
tailoring electronic properties of two-dimensional quantum
materials [1–7], e.g., the formation of Moiré superlattices
and flat bands. This has been evidenced by the recent
groundbreaking discovery of superconductivity and corre-
lated insulator phases in twisted bilayer graphene (TBG)
[8,9], which provide a rich platform for exploring strongly
correlated many-body phases [10–15], with the underlying
physical mechanisms still under investigation [16–26]. In
TBG, the interactions, the interlayer and intralayer cou-
plings, are generally fixed with very limited tunability
[27–30], and magic flat bands occur only in a narrow range
of very small twist angles around ∼1.1°. Going beyond the
layer degree of freedom in TBG, two questions naturally
arise. Can lattices of other pseudo degrees be twisted to
realize novel Moiré lattices and flat bands with great
tunability? If so, can new physics emerge in such twisted
systems?
Ultracold atoms in optical lattices provide a promising

platform for exploring many-body physics in clean envi-
ronments with versatile tunability [31–47]. While it is
challenging to realize twisted bilayer lattices, the atomic
internal states offer a pseudospin degree where optical lattice
for each spin state can be controlled independently (in
particular for alkaline-earth atoms) [48–51], allowing the
realization of spin-twisted lattices and related Moiré physics.
Such spin-twisted lattices have several remarkable
differences from TBG. For instance, two spins reside on
one layer spatially (instead of as a bilayer as in TBG) with
their coupling provided by additional lasers, resulting in
different interspin (compared to interlayer in TBG) hopping
and other physical parameters. The interaction is dominated

by the interspin s-wave scattering between fermion atoms in
relatively twisted spin lattices in contrast to the uniform
intralayer interaction without spin twist in TBG. These
differences can significantly affect the resulting band struc-
tures and many-body quantum states. It is unclear whether
extremely flat and gapped bands (i.e., magic-angle behav-
iors) can exist in a spin-twisted single-layer lattice. If they
can, how large of degrees can the magic angle be tuned to?
Can new phases emerge from twisted interspin interactions?
In this Letter, we address these important questions by

investigating the Moiré physics for cold atoms in two spin-
dependent hexagonal lattices twisted by a relative angle
with two spin states coupled by additional uniform lasers.
Our main results are as follows:
(i) We employ a momentum-space tight-binding method

to include all range real-space tunnelings with high
accuracy, which is crucial for obtaining the correct flat
band structures and low-energy physics.
(ii) Because of the tunability of interspin coupling

strength and lattice depth, all twist angles with θ ≲ 6°
can become magic and support extremely flat and gapped
bands. In general, a smaller magic angle requires weaker
interspin coupling or a shallower lattice. When θ is too
large, no flat bands exist in the whole parameter space due
to strong intervalley coupling.
(iii) The system can be driven to the superfluid phase by

very weak attractive interactions at magic angles where the
flat bands greatly enhance the density of states (DOS).
Strikingly, the superfluid phase corresponds to a Larkin-
Ovchinnikov (LO) state [52] with nonzero pairing momen-
tum and staggered real-space pairing order at the hexagonal
lattice scale, which do not exist in TBG. The superfluid
phase results from the interplay between flat bands and the
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unique interspin interactions of atoms in relatively twisted
spin lattices.
Model.—To obtain independent optical lattices that can be

twisted, we consider two long-lived 1S0 and 3P0 orbital states
(denoted as pseudospin states j↑i and j↓i) of alkaline-earth
(-like) atoms [48–51], as shown in Fig. 1(a). Atoms in state
j↑ð↓Þi are trapped solely by λ↑ð↓Þ-wavelength lasers, which
are tuned out for atoms in the state j↓ð↑Þi (e.g., λ↑;↓ ¼
627 nm and 689 nm for Sr atoms). A hexagonal lattice
VðrÞ ¼ −V0j

P
3
j¼1 ϵj exp½ikL;j · ðr − r0Þ�j2 is generated by

intersecting three lasers at 120° in the x-y plane, with each
beam linearly in-plane polarized [37]. Here V0 is the trap
depth, r0 is the hexagonal plaquette center, and kL;j and ϵj are
the laser wave vector and polarization. Hereafter, we set
momentum and energy units as kR ¼ 2π=λ↓ and ER ¼
ℏ2k2R=2m. The two spin-dependent potentials V↑;↓ðrÞ are
obtained through twisting VðrÞ by�θ=2 [see Fig. 1(b)]. The
shorter wavelength λ↑ lasers have an out-of-plane angle to
ensure the same lattice constant for two potentials. The z
direction is tightly confined by an additional state-indepen-
dent potential using the so-called magic-wavelength lasers
[35], which reduces the dynamics to two dimensions (2D).
The two pseudospin states are coupled by a clock laser [35]
propagating along z with Ω the Rabi frequency.
We first consider commensurate twists with cosðθÞ ¼

½ðn2 þm2 þ 4mnÞ=2ðn2 þm2 þmnÞ� parameterized by
two integers ðm; nÞ [1]. In Fig. 1(c), (d), the real-space
pattern and Moiré Brillouin zone (BZ) are shown together

with the bare BZs of two spins. For typical lattice depth,
long-range tunnelings beyond nearest neighbors (especially
for the interspin couplings where the site separations take
various values and are nearly continuously distributed for
small twists) should be taken into account to obtain the
correct magic flat bands [53]. Small deviations in the
tunneling coefficients may result in a significant change in
the flat band structures due to the narrow bandwidth. Here
we adopt the momentum-space Bloch basis fϕslksðrÞg
(with ks the Bloch momentum, l the band index, and
s ¼ ↑;↓) of VsðrÞ, which spans the same tight-binding
Hilbert space as the Wannier basis. When the two spins are
decoupled, the lowest two bands of each spin state form
two Dirac points for ks at valley Ks and K0

s in the bare
BZs [53].
By projecting onto the basis fϕslksðrÞg, the interspin

coupling Hamiltonian reads [53]

H↑↓ðqÞ ¼
X

l;l0;g↑;↓

Jll
0

g↑g↓
ðqÞα†↑lqþg↑

α↓l0qþg↓ þ H:c:; ð1Þ

where α†slks are the creation operators of the Bloch states,
q is the superlattice Bloch momentum in the Moiré BZ,
and gs are the reciprocal lattice vectors of the Moiré
superlattice whose summation runs over the bare BZ of
state s. The interspin coupling coefficients are Jll

0
g↑g↓ ¼

hϕ↑lqþg↑ jΩjϕ↓l0qþg↓
i, which already incorporate all range

real-space tunnelings.Another advantage of thismomentum-
space approach is that if only the low-energy physics is of
interest, thenweonly need to keep l andgs that correspond to
the low-energy Bloch states [1–4], leading to a rather rapid
convergence of the basis set.
Although spin-twisted optical lattices share some simi-

larities with TBG, several important differences need be
noted. (i) The two twisted optical potentials are spin
dependent and do not affect each other, while in TBG
electrons in one layer can feel the potential of the other
layer. (ii) The interspin couplings in the single layer (realized
by additional lasers) are different from the interlayer tunnel-
ings in TBG [1,53]. (iii) The optical lattice potential takes a
simple cosine form; therefore, the bare bands and interspin
couplings can be obtained accurately from the Bloch states.
TheTBGHamiltonians are usually based on real-space tight-
binding approximations expressed in Slater-Koster param-
eters [1,54–57]. (iv) Long-range tunnelings are more sig-
nificant due to the shallow lattices considered here, which not
only improve the atomic lifetime but also increase the bare
Dirac velocity. (v) Interactions are dominated by the s-wave
scattering between fermion atoms in relatively twisted
lattices, while electronic interactions in TBG, including both
Coulomb repulsive and phonon-mediated attractive inter-
actions, mainly involve electrons in the same layer with no
relative twist [16–21]. (vi) Finally, the cold-atom parameters
(e.g., interspin tunnelings, lattice depth, lattice constant,

(c) (d)

(a) (b)

FIG. 1. Scheme for spin-twisted optical lattices. (a) Energy
level diagram of alkaline-earth(-like) atoms, showing how state-
dependent optical lattices can be realized. (b) Laser configuration
to generate spin-twisted hexagonal lattices. (c) Moiré pattern and
(d) Brillouin zone of spin-twisted hexagonal lattices with θ ¼
9.43° (m ¼ 3, n ¼ 4). AA spots form a triangle lattice with AB or
BA spots at the triangles’ centers. Li are the primitive lattice
vectors. The large hexagons in (d) correspond to the bare BZs for
states ↑ (green) and ↓ (red), respectively.
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interactions, etc.) are highly tunable compared to the one
tunable parameter, the twist angle, in TBG.
Flat bands.—We solve the Moiré bands numerically and

find that all small twist angles (θ ≲ 6°) can becomemagic and
support flat bands with the proper choice of interspin
coupling strength or lattice depth. In Fig. 2(a), (b), we plot
the band structures for different interspin coupling strengths
Ω with V0 ¼ 6 and θ ¼ 5.086° (m ¼ 6, n ¼ 7). Similar to
TBG, the system has four low-energy bands, two of which
form a Dirac cone at the Moiré K (K0) point where the
remaining two bands are split by a tiny gap due to the
intervalley (Ks-K 0̄

s) coupling. The Dirac cones shift to a
higher energy compared to the bare ones, which is due to the
couplings with states away from the valleys that have weak
nonlinearity in thedispersion.The interspin coupling reduces
the Dirac velocity significantly and enhances the DOS near
the Dirac cones, as shown in Fig. 2(a). The peaks in the DOS
correspond to the Van Hove singularities near the Moiré M
points [21,58]. The bandwidth W of the low-energy bands
and Dirac velocity are reduced further as Ω increases and
may even vanish (i.e., the twist angle becomes magic) at
certain interspin coupling strengths. We are interested in the
flat bands associated with magic angles andwill focus on the
physics around the critical couplingΩf where the narrowest
bandwidth occurs [as shown in Fig. 2(b)]. For Ω≲ Ωf, the
four low-energy bands are always separated by an energygap
from other bands in the spectrum, the gap is minimized near
the Moiré Γ point and would close eventually as we increase
Ω above Ωf. Shown in Fig. 2(c) are the bandwidth W and
gaps δΓ;K (with other higher bands) versus Ω.

In Fig. 2(d), we plot Ωf and the corresponding band-
width W and flatness F≡ δΓ=W as functions of the twist
angle θ. For small twists, the low-energy bands are mainly
determined by the states with gs around the Dirac valleys,
and have a narrow width and high flatness at Ω ¼ Ωf. In
addition, the intervalley coupling is weak; thus, two
conduction or valence bands (one from each valley) are
nearly degenerate along the high-symmetric Γ-K (K0) lines
[21]. We find Ωf almost linearly increases with θ.
Specifically, the magic flat bands occur near c ¼ const,
where c≡Ω=ðvDkDÞ is a dimensionless parameter with
kD ¼ 2kR sinðθ=2Þ the K-K0 distance in Moiré BZ and vD
the bare Dirac velocity. This is consistent with the con-
tinuummodel in TBG where c is the single parameter [3,4].
When the twist angles are large θ > 6°, the width and
splitting of the four low-energy bands become comparable
or larger than the gap with other bands, and no magic flat
bands exist for any Ω since the intervalley couplings and
the effects of states away from the bare Dirac valleys
become significant. For incommensurate twist angles, we
can generalize the continuum model and only keep gs
around one valley, which should be valid for small θ [53].
We thus conclude that all small angles θ ≲ 6° can support
magic flat bands.
For different lattice depths V0, the magic behaviors

discussed above are similar [see Fig. 2(d)]. Meanwhile, a
smaller V0 leads to a larger vD and thereby a strongerΩf (for
fixed θ). Long-range tunnelings are also more significant in a
shallower lattice, which would effectively enhance the
interspin couplings, leading to a slightly smaller c where
the flat bands occur. The flatness may also be improved by
decreasing V0 properly, since a larger vD leads to a larger
gap δΓ [3,4] and long-range tunnelings in real space can
reduce intervalley couplings that have large momentum
separations. However, in the very shallow region where
the dispersion linearity around the bare Dirac cone becomes
poor, the flatness starts to decrease with V0.
Superfluid orders.—The narrowly dispersing flat bands

suppress the kinetic energy, and atom-atom interactions can
lead to strongly correlated many-body ground states.
Unlike TBG [16–21], here the interaction of fermion atoms
is dominated by s-wave scattering between atoms in
relatively twisted lattices, with strength tunable through
Feshbach resonance [46,47],

Hint ¼ U0

Z
d2rΨ̂†

↑ðrÞΨ̂†
↓ðrÞΨ̂↓ðrÞΨ̂↑ðrÞ: ð2Þ

We are interested in the superfluid order driven by attractive
interactions. We adopt the mean-field approach [16–18]
with local pairing amplitude ΔðrÞ ¼ U0hΨ̂↓ðrÞΨ̂↑ðrÞi and
assume that it has Moiré periodicity [18], which can
therefore be expanded in the form ΔðrÞ ¼ P

g Δgeig·r with
g the Moiré reciprocal lattice vectors. We use the
Bogoliubov-de Gennes Hamiltonian to obtain ΔðrÞ

(a) (b)

(c) (d)

(deg.)

FIG. 2. Magic flat bands. (a),(b) Moiré bands along high-
symmetry lines [the red dashed lines in Fig. 1(d)] and DOS for
Ω ¼ 0.1 and Ω ¼ 0.116, respectively. We set the bare Dirac cone
energy as zero. The black dashed lines are bare Dirac bands
folded back to Moiré BZ. (c) Flat band width W and gaps δK;Γ
with other higher bands at K and Γ points. In (a)–(c), θ ¼ 5.086°
and V0 ¼ 6. (d) Critical coupling Ωf as a function of θ with
V0 ¼ 6 (circles) and V0 ¼ 4 (plus signs). Color bars show the
flatness at Ω ¼ Ωf with the flat band width shown by the thick
blue markers and lines. The thin solid (dashed) line corresponds
to c ¼ 1.932 at V0 ¼ 6 (c ¼ 1.827 at V0 ¼ 4).
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self-consistently [53] and retain only the four flat bands that
have a much larger DOS than nearby bands. We have
verified that the physics is hardly affected by numerically
including more nearby bands [53].
The phase diagrams for θ ¼ 5.086°, V0 ¼ 6, and

Ω ¼ Ωf are shown in Fig. 3(a). Because of the greatly
enhanced DOS near the magic flat bands at Ωf, the system
could be driven to superfluidity by very weak attractive
interaction jU0j≲ 0.08 (at zero temperature) when the
chemical potential matches the flat band energy. As μ is
tuned away from flat bands, the required interaction
strength for the superfluid phase increases (almost linearly).
For a moderate interaction strength, the mean-field critical
temperature Tc could be relatively high (it reaches its
largest value at μ ≃ 0.005) and shows a similar behavior as
that predicted in the TBG system [18].
Note that, at finite temperature, the relevant physics in

2D is the Berezinskii-Kosterlitz-Thouless (BKT) transition
[59–62] because no long-range superfluid order exists due
to phase fluctuations, and the mean-field Tc is often
overestimated. The BKT critical temperature TBKT could
be obtained from the mean-field superfluid weight
[53,63,64], which is numerically calculated with the results
shown in Fig. 3(a) (roughly, TBKT ≃ 0.4Tc).
In Fig. 3(b), we plot the phase diagrams in theΩ-μ plane.

Away from Ωf, the bandwidth will be broadened, and the
superfluid area becomes wider. However, it requires a lower
critical temperature or stronger interaction due to the reduced
DOS. At theΩ < Ωf side, the flat band DOS peak splits into
two peaks (corresponding to the Van Hove singularities near
the MoiréM points), and therefore the superfluid phase also
splits into two regions where μ matches the DOS peaks. At
theΩ > Ωf side, the DOS peak is simply broadened. As the
jU0j decreases, the superfluid phase shrinks to the area
around Ω ≃Ωf and μ ≃ 0.005.
Strikingly, we find that the superfluid phase corresponds

to an LO state [52], which is very different from that in
TBG. The Cooper pairs have a nonzero center-of-mass
momentum with Δg mainly distributed around the first
reciprocal lattice vector shell of the untwisted hexagonal

lattice and nearly vanishing around zero momentum,
leading to the staggered real-space pairing orders at the
hexagonal lattice scale [Fig. 4(a), (b)]. The attractive s-
wave interaction pairs atoms from opposite valleys, and the
superfluid order is peaked in the AA regions, where the
local DOS for the flat bands is strongly concentrated [53]
and the wave function overlap between two spin states is
significant. Therefore, the intrasublattice pairing is domi-
nant. Because atoms at the same sublattices and opposite
valleys share opposite angular momenta under the threefold
rotation, the pairing order has the same phase factor for the
same sublattice.
Moreover, the pairing is between Moiré states at �q,

which are mainly determined by the bare Bloch states ϕsl�k
at �k nearest to the valleys (thereby contributing most to
the flat bands). In Fig. 4(c), the pairing between ↑ states
(green dots at þk) around valley K0

↑ and ↓ states (red dots
at −k) around valley K↓ is illustrated schematically. Due to
the relative twist, �k are at the same side of K0

↑ and K↓,
respectively [see the black arrows in Fig. 4(c)]. Therefore,
we have ϕ↑lk ∝ ½1; eiγ↑k �T and ϕ↓lð−kÞ ∝ ½1; eiγ↓ð−kÞ �T on the
A and B sublattice basis, with γ↑k ≃ −γ↓ð−kÞ þ π. The
relative phases γsk are related to the chirality of the valleys
(i.e., the Berry phase on loops surrounding the valley),
which are responsible for the staggered pairing order
ΔðrÞ ∝ hϕ↑lkϕ↓lð−kÞi ∝ ½1;−1�T [53]. Such the LO order
is unique for a spin-twisted system with pairing between
atoms from relatively twisted lattices. In TBG, the pairing
between spin-up and spin-down electrons in the same layer
(with no relative twist) leads to ordinary BCS order [17,18].
The correlationCj0j

q ¼ hβj0−qβjqi shows f-wave structure
(βjq is the annihilation operator for the jth flat band), their

(a) (b)

FIG. 3. Phase diagrams for attractive interactions. (a) Phase
diagrams in the U0-μ plane at zero temperature (blue dots). The
critical temperatures Tc (red squares) and TBKT (red diamonds) as
functions of μ at U0 ¼ −2, with Ω ¼ Ωf . (b) Zero-temperature
phase diagrams in the Ω-μ plane for U0 ¼ −0.5 (blue dots) and
U0 ¼ −1 (red squares). N and S represent the normal and
superfluid phases, respectively. Common parameters:
θ ¼ 5.086°, V0 ¼ 6.

(a) 

(b) 

(c) 

(d)

0.5

FIG. 4. Superfluid orders. (a),(b) The superfluid pairing am-
plitudes in real [ΔðrÞ] and momentum space (Δg), respectively.
The white hexagons correspond to the Moiré unit cell in (a) and
the untwisted bare BZs in (b). (c) Schematic illustration of the
pairing (indicated by dashed lines) in the BZs. (d) The correlation
C11
q . Common parameters: θ ¼ 5.086°, V0 ¼ 6, Ω ¼ Ωf , and

U0 ¼ −0.5.
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combined effects lead to the nearly uniform superfluid gap
[53] and the pairing is s wave. The valence bands from
different valleys become degenerate along the high sym-
metric Γ-K lines with avoided crossing (a tiny gap) due to
intervalley couplings; therefore, C11

q changes from charac-
terizing Ks-K 0̄

s to K 0̄
s-Ks correlations across the Γ-K lines

where its sign flips [see Fig. 4(d)].
Discussion and conclusion.—Due to the high tunability

of the cold-atom system, the “magic-angle” physics in the
spin-twisted optical lattice is very robust, supporting magic
flat bands and novel LO superfluid order in a wide range of
parameter space (θ, V0,Ω,U0, etc.). For θ ≃ 5° and V0 ¼ 6,
the gap between flat bands and other bands is ∼10−2ER
(about tens of Hz for Sr atoms) and can be improved further
using shallower lattices (larger vD) or larger twists. The flat
bands and enhanced DOS can be observed within the
atomic gas lifetime (a few seconds for the shallow lattice
considered here) using spectroscopic measurements (e.g.,
radio-frequency spectroscopy) [65–68]. The critical super-
fluid temperature Tc;BKT is in the nanokelvin region
(∼10−3ER), which might be possible with the recently
developing cold-atom cooling techniques [33,69–71].
Thanks to the large twist angle θ ≲ 6°, the Moiré unit cell
may contain fewer than 100 hexagons; therefore, the magic
phenomena can be observed using a small system with tens
of hexagons along each direction. The magic-angle physics
is similar for different stackings or twist axes [53].
In summary, we study the Moiré flat band physics and

the associated superfluid order in spin-twisted optical
lattices for ultracold atoms, which showcase magic-angle
behaviors for a continuum of twists up to 6° and a novel LO
superfluid phase remarkably different from that in TBG. In
the future, it would be interesting to study spin-twisted
lattices of other types (square, triangle, etc.) or with
different lattice depths and gapped bands (similar to
transition metal dichalcogenide-based Moiré systems
[72,73]). Moreover, one could study possibly interesting
many-body states under repulsive interaction and may even
consider the nuclear spin states of alkaline-earth atoms with
nuclear-spin-exchange and interspin interactions. In all, our
work provides a highly tunable playground for exploring
quantum many-body physics and twistronics with novel
twisted pseudo degrees of freedom.
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