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Topological superfluids with finite-momentum
pairing and Majorana fermions
Chunlei Qu1,*, Zhen Zheng2,*, Ming Gong3, Yong Xu1, Li Mao1, Xubo Zou2, Guangcan Guo2 & Chuanwei Zhang1

Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of

fundamental importance in elementary particle physics and dark matter, but also building

blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in

solid state and cold atomic systems. These studies are generally based on superconducting

pairing with zero total momentum. On the other hand, finite total momentum Cooper

pairings, known as Fulde–Ferrell (FF) Larkin–Ovchinnikov (LO) states, were widely studied in

many branches of physics. However, whether FF and LO superconductors can support MFs

has not been explored. Here we show that MFs can exist in certain types of gapped FF states,

yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate

the existence of such topological FF superfluids and the associated MFs using spin–orbit-

coupled degenerate Fermi gases and derive their parameter regions. The implementation of

topological FF superconductors in semiconductor/superconductor heterostructures is also

discussed.
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T
opological superconductors and superfluids are exotic
quantum matters that host topological protected excita-
tions, such as robust edge modes and Majorana fermions

(MFs) with non-Abelian exchange statistics1. MFs are important
not only because of their fundamental role in elementary particle
physics and dark matters2, but also because of their potential
applications in fault-tolerant topological quantum computation3.
Recently some exotic systems, such as n¼ 5/2 fractional quantum
Hall states3, chiral p-wave superconductors/superfluids3, hetero-
structure composed of s-wave superconductors and semi-
conductor nanowires (nanofilms) or topological insulators4–10

and so on, have been proposed as systems supporting MFs.
Following the theoretical proposals, exciting experimental
progress for the observation of MFs has been made recently in
semiconductor11–14 or topological insulator heterostructures15,
although unambiguous experimental evidence for MFs is still
lacked.

These theoretical and experimental studies are based on the
superconducting Cooper pairing (s-wave or chiral p-wave) with
zero total momentum, that is, the pairing is between two fermions
with opposite momenta k and � k (denoted as Bardeen-Cooper-
Schrieffer (BCS) pairing hereafter). On the other hand, the
superconducting pairing can also occur between fermions with
finite total momenta (pairing between k and � kþQ) in the
presence of a Zeeman field, leading to spatially modulated
superconducting order parameters in real space, known as Fulde–
Ferrell (FF) and Larkin–Ovchinnikov (LO) states. The FF and LO
states were first predicted in 1960s16,17, and now are a central
concept for understanding exotic phenomena in many different
systems18–23. A natural question to ask is whether MFs can also
exist in an FF or LO superconductor or superfluid?

In this article, we propose that FF superconductors/superfluids
may support MFs if they possess two crucial elements: gapped bulk
quasi-particle excitations and non-trivial Fermi surface topology.
These new quantum states are topological FF superconductors/
superfluids. In this context, traditional gapless FF states induced by
a large Zeeman field do not fall into this category. Here we propose
a possible platform for the realization of topological FF superfluids
using two-dimensional (2D) or one-dimensional (1D) spin–orbit
(SO)-coupled degenerate Fermi gases subject to in-plane and
out-of-plane Zeeman fields. Recently, the SO coupling and
Zeeman fields for cold atoms have already been realized in
experiments24–28, which provide a completely new avenue for
studying topological superfluid physics. It is known that SO-
coupled degenerate Fermi gases with an out-of-plane Zeeman field
support MFs with zero total momentum pairing29–32. We find in
suitable parameter regions the in-plane Zeeman field can induce
the finite total momentum pairing33–37, while still keeps the
superfluid gapped and preserves its Fermi surface topology. The
region for topological FF superfluids depends not only on the
chemical potential, pairing strength, but also on the SO coupling
strength, total momentum and effective mass of the Cooper pair,
as well as the orientation and magnitude of the Zeeman field, thus
greatly increases the tunability in experiments. Finally, the
potential implementation of the proposal in semiconductor/
superconductor heterostructures is also discussed.

Results
System and Hamiltonian. Consider an SO-coupled Fermi gas in
the xy plane with the effective Hamiltonian

H¼
X
kss0

cyk;sHss
0

0 ck;s0 þVint; ð1Þ

where H0¼ ðk2=2mÞ�mþ ak�~s � êz � h �~s, k¼ (kx, ky), a is
the Rashba SO coupling strength, h¼ (hx, 0, hz) is the Zeeman

field and ~s is the Pauli matrices. Vint¼g
P

cyk1;"c
y
k2;#ck3;#ck4;"

describes the s-wave scattering interaction, where g � 1¼
�
P

k k2=mþEb
� �� 1

is the scattering interaction strength, Eb

is the binding energy and k1þ k2¼ k3þ k4 due to the momen-
tum conservation. In experiments, 2D degenerate Fermi gases can
be realized using a 1D deep optical lattice along the third
dimension38,39, where the tunnelling between different layers is
suppressed. The pseudospins of atoms are defined through
atomic hyperfine ground states. By transferring Raman photons
between two hyperfine ground states, an effective 1D SO coupling
(used below) has been created in experiments for both bosonic
and fermionic atoms24–28, where the effective in-plane and out-
of-plane Zeeman fields can be tuned independently by varying
the detuning and intensity of the Raman coupling lasers. The
schemes for the realization of 2D Rashba SO coupling are similar,
but involve more laser beams, as proposed in several different
theoretical schemes40–42.

Without in-plane Zeeman field hx, the Fermi surface is
symmetric around k¼ 0, and the superfluid pairing is between
atoms with opposite momenta k and � k (Fig. 1b). Although
with both hx and SO coupling, the Fermi surface becomes
asymmetric along the y direction (see Fig. 1a,c), and the pairing
can occur between atoms with momenta k and � kþQ. In real
space, such a finite total momentum pairing may lead to a FF-
type order parameter D(x)¼DeiQ � x with a single FF momentum
Q¼ (0, Qy) that is parallel to the deformation direction of the
Fermi surface, as found in recent real37 and momentum33–35

space calculations. Note that k and � kþQ for the FF-type
Cooper pairs may not stay simultaneously on the Fermi surface
for all k. However, the pairing between them is still effective
because the pairing can occur not only exactly on the Fermi
surface, but also near the Fermi surface with an energy width
determined by the order parameter D, which, for cold atomic
systems, can be comparable to the Fermi energy43. The basic
picture presented in Fig. 1 still holds in this case. The energies of
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Figure 1 | Single-particle band structure and Berry curvature. (a) Energy

dispersion of the lower band and an illustration of the FF-type of Cooper

pairing. The green arrows represent the momenta of a Cooper pair of

two atoms on the asymmetric Fermi surface. The red arrow represents the

total finite momentum of the paring, which is along the deformation

direction of the Fermi surface. Note that k and � kþQ may not be along

the same line in 2D. (b) Symmetric band structure with hx¼0, which

supports zero total momentum pairing. Dashed lines represent the band

dispersion with hz¼0. (c) Asymmetric band structure with hx a 0, which

supports FF state with finite-momentum pairing. Only kx¼0 plane is shown

in (b) and (c). (d) Berry curvature of the lower band, whose peak is shifted

from the origin by hx/a along the ky direction.
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the superfluids with total momentum Q and �Q are non-
degenerate; therefore, FF phase with a single Q, instead of LO
phase (D(x)¼Dcos(Q . x)) where pairing occurs at both ±Q, is
more energetically favourable for the parameters considered here.

The dynamics of the system can be described by the following
Bogliubov-de Gennes (BdG) Hamiltonian in the mean-field level,

HBdGðkÞ ¼
H0ðQ2 þ kÞ D

D � syH�0 ðQ2 � kÞsy

� �
; ð2Þ

where the Nambu basis is chosen as
ðckþQ=2;";ckþQ=2;#;c

y
� kþQ=2;#;� cy� kþQ=2;"Þ

T. The gap, number
and momentum equations are solved self-consistently to obtain
D, m and Q (see Methods), through which we determine different
phases.

Physical mechanism for topological FF phase. Without SO
coupling, the orientation of the Zeeman field does not induce any
different physics due to SO(2) symmetry. The presence of both hx

and SO coupling breaks this SO(2) symmetry, leading to a Fermi
surface without inversion symmetry, see Fig. 1a–c. Here, hx

deforms the Fermi surface, leading to FF Cooper pairings,
whereas hz opens a gap between the two SO bands, making it
possible for the chemical potential to cut a single Fermi surface
for the topological FF phase. The Berry curvature of the lower
band reads as

Ok¼
a2hz

2ða2k2
x þðaky þ hxÞ2þ h2

zÞ
3=2 � ð3Þ

Note that hx shifts the peak of Berry curvature from k¼ 0 to (0,
� hx/a) (denoted by an arrow in Fig. 1d). When atoms scatter
from k to k 0 on the Fermi surface, they pick up a Berry phase,
whose accumulation around the Fermi surface y¼

R
d2kOkEp.

Such Berry phase modifies the effective interaction from s-wave
(Vkk

0 � g is a constant) to s-wave plus asymmetric p-wave

Vkk
0 � g ke� iyk þ hx

a

� �
k0eiyk0 � hx

a

� �
ð4Þ

on the Fermi surface. Here we recover the well-known chiral
pxþ ipy pairing29 in the limit hx¼ 0. The in-plane Zeeman field
here creates an effective s-wave pairing component (although still
hosts MFs), and the effective pairing is reminiscent to the (sþ p)-
wave pairing in some solid materials44.

Parameter region for MFs. The BdG Hamiltonian (2) satisfies
the particle-hole symmetry �¼LK, where L¼ isyty, K is the
complex conjugate operator and X2¼ 1. The parameter region
for the MFs is determined by the topological index
M¼ signðPffGgÞ, where Pf is the Pfaffian of the skew matrix
G¼HBdG(0)L. M¼� 1ðþ 1Þ corresponds to the topologically
non-trivial (trivial) phase45. The topological phase exists when

h2
z þ �h2

x4�m2þD2; ahzD 6¼ 0; Eg40; ð5Þ
where �hx¼hxþ aQy=2 and �m¼m�Q2

y=8m. Eg¼min(Ek, s) defines
the bulk quasi-particle excitation gap of the system with Ek,s as
the particle branches of the BdG Hamiltonian (2). The first
condition reduces to the well-known h2

z4D2þ m2 in BCS
topological superfluids6,7,11–14,31. The last condition ensures the
bulk quasi-particle excitations are gapped to protect the zero-
energy MFs in the topological regime. The SO coupling and the
FF vector shift the effective in-plane Zeeman field and the
chemical potential. In contrast, in the BCS topological
superfluids, the SO coupling strength, although required, does
not determine the topological boundaries. Our system therefore
provides more knobs for tuning the topological phase transition.
To further verify the topological condition in equation (5), we

calculate the Chern number in the hole branches C¼
P

n
Cn in the

gapped superfluids45, and confirm C¼ þ 1 when equation (5) is
satisfied and C¼ 0 otherwise. Here Cn¼ 1

2p

R
d2kGn is the Chern

number, Gn¼� 2Im @cn
@kx
j @cn
@ky

D E
is the Berry curvature46, and

cnj i is the eigenstate of two hole bands of the BdG Hamiltonian
(2).

The transition from non-topological to topological phases
defined by equation (5) can be better understood by observing the
close and reopen of the excitation gap Eg, which is necessary to
change the topology of Fermi surface. In Fig. 2, we plot the
change of Eg along with the order parameter |D|, the chemical
potential m and the FF vector Q as a function of Zeeman fields.
For a fixed hx but increasing hz, Eg may first close and then
reopen (Fig. 2a), signalling the transition from non-topological to
topological gapped FF superfluids (Qy is finite for all hz, see
Fig. 2b). For a fixed hz, the superfluid is gapped and Qyphx for a
small hx (see Fig. 2d), thus any small hx can transfer the gapped
BCS superfluids at hx¼ 0 to FF superfluids. However, such a
small hx does not destroy the bulk gap of BCS superfluids
(topological or non-topological), making gapped topological FF
superfluids possible when the system is initially in topological
BCS superfluids without hx. With increasing hx (Fig. 2c), Eg may
first close but does not reopen immediately, signalling the
transition from gapped FF superfluids to gapless FF superfluids.
For a small hz¼ 0.2 EF, further increasing hx to � 0:78EF, Eg

reopens again (Fig. 2c), signalling the transition from gapless FF
to gapped topological FF superfluids. In this regime, Qy � 0:6KF,
which is not small. For a strong enough Zeeman field, the pairing
may be destroyed and the system becomes a normal gas.

The complete phase diagrams are presented in Fig. 3. As Qy

and hx have the same sign, the phase diagrams show perfect
symmetry in the hx� hz plane. The BCS superfluids can only be
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Figure 2 | Effects of Zeeman fields. The order parameter D (dash-dotted

black line), chemical potential m (dashed red line), bulk quasi-particle

gap Eg (solid blue line), and FF vector Qy (solid black line) are plotted as a

function of out-of-plane Zeeman field hz (a,b) and in-plane Zeeman field hx

(c,d), respectively. The energy unit for D, m, and Eg is EF. The dashed blue

lines in (b) and (d) are the best fitting with quadratic and linear functions in

the small Zeeman field regime, respectively. In (a) and (b), hx¼0.2EF,

whereas in (c) and (d), hz¼0.2EF. Other parameters are Eb¼0.4EF,

aKF¼ 1.0EF. The vertical lines mark the points where the Pfaffian changes

the sign.
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observed at hx¼ 0, hence are not depicted. With increasing SO
coupling strength, the topological FF phase is greatly enlarged
through the expansion to the normal gas phase. For a small SO
coupling (Fig. 3a), a finite hz is always required to create the
topological FF phase; In the intermediate regime (Fig. 3b), we find
an interesting parameter regime where the topological FF phase
can be reached with an extremely small hz around hx � 0:8EF.
However, the topological FF phase can never be observed at
hz¼ 0, as analysed before from the Berry curvature and Chern
number. From Fig. 3a,b, we see that the topological gapped
FF phase can be mathematically regarded as an adiabatic
deformation of the topological BCS superfluids by an in-plane
Zeeman field, although their physical meaning are totally
different. In Fig. 3c,d, we see that the gapless FF phase can
be observed at small binding energy and small hz, whereas
for large enough binding energy, the system can be either
topological or non-topological gapped phases. In this regime,
Eg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þD2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
z

p
, where m � EF�Eb=2, and

D2 � 2EFEb, thus hzpEb is required to close and reopen Eg

(see Fig. 3c,d).
The tricritical points marked by symbols in Fig. 3 are essential

for understanding the basic structure of the phase diagram. Along
the hz axis, the system only supports gapped BCS superfluids
(topological or non-topological) and normal gas31, whereas along
the hx axis the system only supports trivial FF superfluids and
normal gas33–35. So the adiabatic connection between the
topological BCS superfluids and trivial FF phases is impossible,
and there should be some points to separate different phases,
which are exactly the tricritical points. In our model, the
transition between different phases is the first-order process.
The existence of tricritical point here should be in stark contrast
to the tricritical point at finite temperature in the same system
without SO coupling, which arises from the accidental
intersection of first- and second-order transition lines23.
Therefore, the tricritical points in Fig. 3 cannot be removed,
although their specific positions vary with the system parameters.

Chiral edge modes. The topological FF superfluids support exotic
chiral edge modes. To see the basic features more clear, we
consider the same model in a square lattice with the following
tight-binding Hamiltonian:

HL¼H0þHZþHsoþVint; ð6Þ

where H0¼� t
P
hi;ji;s cyiscjs�m

P
is nis, HZ¼� hx

P
iðc
y
i"ci# þ

cyi#ci"Þ� hz
P

iðni" � ni#Þ, Hso ¼ ða=2Þ
P

iðc
y
i� x̂#ci" � cyiþ x̂#ci" þ

icyi� ŷ#ci"� icyiþ ŷ#ci"þH:C:Þ and Vint¼�U
P

i ni"ni#¼
P

i D
�
i ci#ci"

þDic
y
i"c
y
i# � jDi j 2 =U with Di¼ �U/cikcimS, nis¼cyiscis. Here,

cis denotes the annihilation operator of a
fermionic atom with spin s at site i¼ (ix, iy). Hereafter, we use
t¼ 1 as the basic energy unit. For more details, see Methods.

In the following, we only present the chiral edge states in the
topological gapped FF superfluid regime, and assume Di ¼
DeiQyiy . We consider a 2D strip with width W¼ 200, and the
results for the strip along x and y directions in the topological FF
phase are presented in Fig. 4. Similarly, here the energy spectrum
is obtained after a gauge transformation to remove the order
parameter spatial dependence (see Methods). The linear disper-
sion of the edge states reads as

Hedge¼
X

k

vLc
y
kLkckL� vRc

y
kRkckR; ð7Þ

where L and R define the left and right edges of the strip, and vL

and vR are the corresponding velocities. We have also confirmed
that the wavefunctions of the edge states are well localized at two
edges. For a strip along the x direction, the particle-hole
symmetry as well as the inversion symmetry (kx-� kx) ensure
that the eigenenergies of equation (6) always come in pairs
(Ek,�Ek), thus vR¼ vL (Fig. 4a). However, when the strip is along
the y direction (parallel to the FF momentum Q and the in-plane
Zeeman field hx), the eigenenergies no longer come in pairs,
therefore vR a vL (Fig. 4b). Note that the asymmetric spectrum
along the ky direction originates from the intrinsic inversion
symmetry breaking (ky-� ky) of the system, and cannot be
restored by simply changing the observation frame. There are two
factors that contribute to the asymmetric spectrum: (i) the SO
coupling and in-plane Zeeman field, which distort the single-
particle band as shown in Fig. 1c; (ii) the FF momentum Q, which
shifts particle and hole bands along different directions. Both of
them lead to asymmetric edge velocities. A careful examination
shows that the overall edge spectrum is still asymmetric with both
factors taken into account because of the intrinsic inversion
symmetry breaking. The velocity difference vR� vL depends on
many different parameters (a, hx, Q and so on), and there is
no simple relation between vR� vL and Q. In fact, vR� vL is still
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non-zero even when Q is forced to be zero. The Chern number
C¼ 1 in our lattice model, thus only one pair of chiral edge states
can be observed.

MFs in 1D chain. Topological FF superfluid and associated MFs
can also be observed in 1D SO-coupled Fermi gas when the
Hamiltonian (6) is restricted to 1D chain. In this case, the system
is characterized by a Z2 invariant, which can be determined using
the similar procedure as discussed above. The only difference is
that now not only k¼ 0, but also k¼ p need be taken into account
(see Methods). In Fig. 5a, we see Majorana zero-energy state
protected by a large gap (� 0:3t) emerges in a suitable parameter
region. The superfluid order parameter (Fig. 5b) has the FF form
in the bulk and responses to the boundary in the length scale of
the healing length �hvF/D, which is estimated to be � 10 lattice
sites for the parameters used in Fig. 5b, agreeing with the
numerical results. The local Bogoliubov quasi-particle operator

gðEnÞ¼
P

is un
iscisþ vn

iscyis, where the zero-energy wavefunction

u0
i"; u0

i#; v0
i"; v0

i#

� �
¼ Ui"eifi" ;Ui#eifi# ;Vi"e� ifi" ;Vi#e� ifi#
� �

satisfies

u0
is¼v0�

is at the left edge and u0
is¼� v0�

is at the right edge (see
Fig. 5c). This state supports two local MFs at two edges,
respectively6.

Note that the spatially varying phases in the FF superfluids in
both 1D and 2D indicate that there may exist a finite mass
supercurrent flow across the system. However, this current is
compensated by the backflow of the quasi-particle current arising
from the imbalanced spin polarization; therefore, no net mass
current is expected16. This basic conclusion can also be
understood from the fact that net current is determined by
J¼ qF(Q)/qQ, where F is the total free energy of the system;
therefore, the net current is zero for the ground state.

Experimental observations. Several different methods may be
used to observe both finite-momentum pairing and topological
MFs. For instance, the noise correlation of the time-of-flight

images47 may reveal the total momentum of the Cooper pairing
of the FF superfluids, which could be quite large in the presence
of a suitable in-plane Zeeman field. The momentum-resolved
radio-frequency spectroscopy48 may be used to directly map the
quasi-particle band structure of the superfluid, where the
asymmetric quasi-particle band dispersion of FF superfluids
may be probed35,49. From Fig. 2, we see that even for a moderate
interaction strength, the bulk quasi-particle energy gap Eg may be
larger than 0.3EF, which is much larger than the resolution of the
radio-frequency spectroscopy. The large energy gap also ensures
that the physics presented here can be observed even at a finite
temperature T when T is smaller than the Kosterlitz–Thouless
transition temperature, which approaches EF/8 in the strong
interaction regime for the gapped system31. Moreover, the energy
difference per particle between BCS excited state and FF ground
state is greatly enhanced by the SO coupling33,35,50; therefore, the
ground state can be reached at proper finite temperature by
carefully cooling cold atom gases. Generally, non-FF topological
superfluids with zero total momentum pairing can be observed
without an in-plane Zeeman field. The optimal parameters for
observing topological FF superfluids should be the region with a
large energy gap and a large FF momentum. Therefore, relatively
large Zeeman fields hx and hz, although not strong enough to
destroy the Cooper pairings, are preferred in experiments.
Further, the phase transition to the topological superfluid with
MFs is accompanied with the bulk quasi-particle excitation gap
closing and reopening at k¼ 0, which should also be observable
in the momentum-resolved radio-frequency spectroscopy. MFs
yield spatially localized zero-energy peak in local density of
states51, which is separated from other quasi-particle states by a
gap at the order of D, and can be detected using spatially resolved
radio-frequency spectroscopy52. Because of the lack of disorder
and the precisely controlled experimental parameters in cold
atoms, the momentum and spatial resolved radio-frequency
spectroscopy measurements should provide conclusive signature
for topological FF superfluids with MFs.

Discussion
Our proposed topological FF phase may also be realized using
semiconductor/superconductor heterostructures. Recently, topo-
logical BCS superconductors and the associated MFs have been
proposed in such heterostructures5–8 and some preliminary
experimental signatures have been observed11–14. To realize a
topological FF superconductor, the semiconductor should be in
proximity contact with a FF superconductor, which introduces
finite-momentum Cooper pairs. The topological parameter region
defined in equation (5) still applies except that the order
parameter, chemical potential and FF vector are external
independent parameters. The flexibility of equation (5) makes it
easier for tuning to the topological region with MFs. Because the
FF state can sustain in the presence of a large magnetic field, it
opens the possibility for the use of many semiconductor
nanowires with large SO coupling but small g-factors (for
example, GaSb, hole-doped InSb and so on).

In summary, we propose that topological FF superfluids or
superconductors with finite-momentum pairings can be realized
using SO-coupled s-wave superfluids subject to Zeeman fields and
they support exotic quasi-particle excitations such as chiral edge
modes and MFs. The phase transition to the topological phases
depends strongly on all physical quantities, including SO
coupling, chemical potential, Zeeman field and its orientations,
paring strength, FF vector Q and the effective mass of Cooper
pairs explicitly, which are very different from topological BCS
superfluids/superconductors that are intensively studied recently.
These new features not only provide more knobs for tuning
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Figure 5 | Majorana fermions in a 1D chain. (a) Plot of the BdG quasi-

particle excitation energies ±E2 (dashed red line), ±E1 (solid black line),

and the order parameter (dash-dotted blue line). (b) The spatial profile

of the FF-type order parameter obtained self-consistently. The dotted red

and dashed black lines correspond to the real and imaginary parts of Di.

The solid blue line represents |Di|. (c) The wavefunction (WF) of the

Majorana zero-energy state (Um ,Vm ) in the 1D chain. Green line, Um ; red

line, Vm. (Uk ,Vk ) is similar but with different amplitudes. The parameters
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topological phase transitions, but also greatly enrich our under-
standing of topological quantum matters. The topological FF
phases have not been discussed before, and the phases unveiled in
this article represent a totally new quantum matter.

After the submission of this manuscript, we become aware of
relevant work53, where topological FF phases in 2D are discussed
using slightly different SO coupling and Zeeman field.

Methods
Momentum space BdG equations. The partition function at finite temperature

T is Z¼
R
D½c;cy�e� S½c;cy�, where

S½c;cy�¼
Z

dtdx
X
s¼";#

csðxÞ
y@tcsðxÞþH; ð8Þ

with H defined in equation (1), and Vint¼gcy"c
y
#c#c" in real space. The FF phase

is defined as follows:

ghc#ðxÞc"ðxÞi¼DeiQ�x; ð9Þ

where Q is the total momentum of the Cooper pairs and D is a spatially inde-
pendent constant. Here, the position-dependent phase of D(x) can be gauged out
by the transformation cs - cseiQ.x/2. Integrating out the fermion field c and cw,
we obtain Z¼

R
DDe� Seff , with effective action

Seff¼
Z

dtdx
jD j 2

g
� 1

2b
lnDetbG� 1 þTrðHÞ; ð10Þ

where b¼ 1/T, and G� 1¼ qtþHBdG. The order parameter, chemical potential and
FF vector Q are determined self-consistently by solving the following equation set

@O
@D
¼0;

@O
@m
¼� n;

@O
@Q
¼0; ð11Þ

where O¼ Seff/b is the thermodynamical potential. In our model, the deformation
of Fermi surface is along the y direction, thus we have Q¼ (0,Qy), and only three
parameters need be determined self-consistently. In practice, the ground-state
phase diagram of the system (that is, D, m, Qy) is determined by the saddle point of
O, which can be obtained by minimizing the free energy F(Q)¼Oþ nm with
respect to these parameters. In our self-consistent numerical calculations, we also
compare the free energies for FF superfluids (let Qy as a variable) and normal BCS
superfluids (enforce Qy¼ 0), and find that SO coupling generally increases the
energy difference between FF ground states and BCS excited states33,35,49,50. The
energy difference per particle is � 0:01EF for a 2D Fermi gas, which ensures that
the predicted exotic states may be observable in experiments at finite temperature.

We determine different quantum phases using the following criterion. When
Eg40, D a 0, we have gapped FF phases (M ¼ � 1(C¼ þ 1) for topological, and
M¼ þ 1 (C¼ 0) for non-topological state). When there is a nodal line with Eg¼ 0
and D a 0, we have gapless FF phases. When D¼ 0 (then Q¼ 0 is enforced), we
get normal gas phases. It is still possible to observe gapless excitations in the gapless
FF phase regime; however, we do not distinguish this special condition because
gapless excitations are not protected by gaps. In our numerics, the energy and
momentum are scaled by Fermi energy EF and its corresponding momentum KF in
the case without SO coupling and Zeeman fields. The results in Figs 2 and 3 are
determined at n¼K2

F=2p and T¼ 0.

Real-space BdG equations. In the tight-binding model of equation (6), the many-
body interaction is decoupled in the mean-field approximation. The particle
number nis¼c

y
iscis and superfluid pairing Di¼ � U/cikcimS are determined self-

consistently for a fixed chemical potential. Using the Bogoliubov transformation,
we obtain the BdG equation

X
j

Hij" aij 0 Dij

� aij Hij# �Dij 0
0 �D�ij �Hij" � aij

D�ij 0 aij �Hij#

0
BB@

1
CCA

un
j"

un
j#
� vn

j"
vn

j#

0
BB@

1
CCA¼En

un
j"

un
j#
� vn

j"
vn

j#

0
BB@

1
CCA; ð12Þ

where

Hij"¼� tdi� 1;j �ðmþ hzÞdij; ð13Þ

Hij#¼� tdi� 1;j �ðm� hzÞdij; ð14Þ

aij¼
1
2
ðj� iÞadi� 1;j� hxdi;j; ð15Þ

n̂ish i¼
X

n

½ juis j 2 f ðEnÞþ jvis j 2 f ð� EnÞ�; ð16Þ

Dij¼�Udij

X
n

½un
i"v

n�
i# f ðEnÞ� un

i#v
n�
i" f ð�EnÞ�; ð17Þ

with f(E)¼ 1/(1þ eE/T) is the Fermi–Dirac distribution function. In the tight-
binding model, the FF phase and the LO phase can be determined naturally, which
depend crucially on the parameters of the system as well as the position of the
chemical potential37. The results in Figs 4 and 5 are obtained at T¼ 0.

Topological boundaries in lattice models. To determine the topological phase
transition conditions, we transform the tight-binding Hamiltonian to the
momentum space in equation (2). Here xk is replaced by � 2tcos(kx)� 2
tcos(ky)� m for the kinetic energy, and ka by sin(ka) for the SO coupling, where
a¼ x,y. The topological boundary conditions can still be determined by the Pfaffian
of G(K)¼HBdG(K)L at four non-equivalent points, K1¼ (0,0), K2¼ (0,p), K3¼
(p, 0), K4¼ (p, p) when the system is gapped. At these special points, G(K) is a
skew matrix. The topological phase is determined by

M¼
Y4

i¼1

signðPfðGðKiÞÞÞ ¼� 1: ð18Þ

For uniform BCS superfluids, the Pfaffian at K2 and K3 are identical, thus only K1

and K4 are essential to determine the topological boundaries. However, in our
system, all four points affect the topological boundaries, and the exact expression of
M is too complex to present here. In 1D chain, there are only two non-equivalent
points at K1¼ 0 and K2¼ p. We find Pf(G(K1))¼D2� (hz� m� 2tcos(Qy/
2))(hzþ mþ 2tcos(Qy/2))� (hxþ asin(Qy/2))2, and Pf(G(K2))¼D2� (hz�mþ
2tcos(Qy/2))(hzþm� 2tcos(Qy/2))� (hx� asin(Qy/2))2. The topological index in
the gapped regime is determined by

M¼ signðPfðGðK1ÞÞÞsignðPfðGðK2ÞÞÞ¼� 1: ð19Þ
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