Supplemental Materials

Quantum-Enhanced Tunable Second-Order Optical Nonlinearity in Bilayer Graphene

Sanfeng Wu¹, Li Mao², Aaron M. Jones¹, Wang Yao³, Chuanwei Zhang², Xiaodong Xu^{1,4*}

¹ Department of Physics, University of Washington, Seattle, Washington 98195, USA

² Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164 USA

³ Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China

⁴ Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, USA

^{*}Email: <u>xuxd@uw.edu</u>

1. Theory for second order optical conductivity

Considering the applied potential bias between top and bottom gates, the electronic Hamiltonian near the Dirac points (K and K') is¹:

where

$$H = \sum \psi_{k}^{\dagger} \mathcal{H}_{k} \psi_{k},$$

$$\psi_{k}^{\dagger} = (b_{k}^{1\dagger}, a_{k}^{1\dagger}, a_{k}^{2\dagger}, b_{k}^{2\dagger}),$$

and

$$\mathcal{H}_{\boldsymbol{k}} = \begin{pmatrix} -\Delta & \hbar v_f g & 0 & 0\\ \hbar v_f g^* & -\Delta & \gamma_1 & 0\\ 0 & \gamma_1 & \Delta & \hbar v_f g\\ 0 & 0 & \hbar v_f g^* & \Delta \end{pmatrix}$$

 $a_k^{i\dagger}(b_k^{i\dagger})$ is the creation operator for electrons at the sublattice A (B), in the layer i(i = 1,2), and with momentum k in the BZ. $k = (k_x, k_y)$ is the continuous wave vector from K, K' and $g = k_x - \xi i k_y$ is a complex number ($\xi = +1$ for K and $\xi = -1$ for K'). The Fermi velocity v_f is determined by the intra-layer hopping energy $\gamma_0 \approx 2.8 \text{ eV}$ between nearest neighbors. *a* is the lattice constant of graphene. $\gamma_1 \approx 0.4 \text{ eV}$ is the interlayer hopping parameter between A_1 and A_2 . We ignore other hopping processes due to their relatively weak strengths. The diagonal items $\pm \Delta$ come from the potential bias between the two graphene-layers. Diagonalizing the Hamiltonian, we can obtain the energy spectrum with four branches near the Dirac point¹.

The interaction between light and BLG can be described by replacing the momentum vector $\hbar k$ with¹

$\boldsymbol{p}=\hbar\boldsymbol{k}+\boldsymbol{e}\boldsymbol{A},$

where $A = -E/(i\omega)$ is the vector potential of the incident laser beam. As an example, if the incident laser is a circularly polarized beam σ_+ , then $E = \frac{Ee^{i\omega t}}{2i}(1, -i) + c.c.$ The interaction between laser and electrons (~1meV) is weak compared to the system energy scale (~0.1eV), therefore we can write the total Hamiltonian under band representation as

$$\overline{\mathcal{H}}_{p} = \overline{\mathcal{H}}_{k} + \frac{ev_{f} E e^{i\omega t}}{2\omega} \mathbf{H}_{\Phi}.$$

where $H_{\Phi} = \Phi^{\dagger}[I \otimes (\sigma_x - i\xi\sigma_y)]\Phi$ for a circularly polarized beam σ_+ . *I* is a 2 × 2 unit matrix. $\sigma = (\sigma_x, \sigma_y)$ is the vector of Pauli matrixes. Φ is the initial eigenstate without the laser-field satisfying $\overline{\mathcal{H}}_k = \Phi^{\dagger}\mathcal{H}_k\Phi = \text{diag}[\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4]$, where $\epsilon_i(i = 1, 2, 3, 4)$ is the energy of the ith band.

The evolution of electronic states is determined by the quantum Liouville equation^{2,3} $i\hbar\partial_t \rho = [\bar{\mathcal{H}}_{p}, \rho] - i\Gamma(\rho - \rho(t = 0)),$

where ρ is the time dependent quantum state of electrons with momentum **k** at temperature *T* and chemical potential μ . Γ describes the electronic relaxation time^{4,5}. The linear and nonlinear optical response of ρ to the optical fields can be obtained by solving the Liouville equation perturbatively

 $\rho = \rho_k + \left[\rho_1(t)e^{i\omega t} + c.c\right]E + \left[\rho_2(t)e^{i2\omega t} + c.c\right]E^2 + \cdots$

The initial state $\rho_k = \text{diag}[f_1, f_2, f_3, f_4]$ is the initial state obtained from the Fermi-Dirac distribution $f_i = \frac{1}{\exp[(\epsilon_i - \mu)/k_B T] + 1}$ of electrons.

As we mentioned in the main text, the SHG does not exist unless there is an in-plane electric field. According to semi-classical electron transport theory, if there is an in-plane electric field \mathcal{E} , the Fermi surface is shifted by wavenumber $\Delta \mathbf{k} = e\tau \mathcal{E}/\hbar = m^* v_d/\hbar$ along the direction opposite the electric field owing to the negative electron charge. τ is the relaxation time, m^* is the electronic effective mass and v_d is the drift velocity. This process is responsible for the leak current $j_{sc} = \sigma_{dc}\mathcal{E}d$ measured by the ammeter, where d is the sample length perpendicular to the electric field, assuming a rectangular sample shape. Replacing v_d with the electronic mobility $u_m = |v_d/\mathcal{E}|$, we have

$$\hbar\Delta \boldsymbol{k} = \frac{m^* u_m j_{\rm sc}}{\sigma_{\rm dc} \rm d}.$$

According to experimental data of $\text{BLG}^{6,7}$, we choose $m^* \approx 0.05m_e$, $u_m \approx 1\frac{m^2}{v_s}$, $\sigma_{dc} \approx \frac{e^2}{\hbar}$, $v_f \approx 10^6 m$ /, then $\hbar v_f \Delta \mathbf{k} \approx 0.01 eV$ for a leak current $j_{sc} \approx 8 \,\mu\text{A}/\mu m$ (corresponding to $\mathcal{E} \approx 2000 \text{V/m}$).

As a result of the shift of the Fermi surface, the initial electronic state in the presence of the in-plane applied current turns out to be

$$\rho_k \leftarrow \rho_{k-\Delta k}$$

Substituting this into the quantum Liouville equation, we obtain the first order and second order equations for the electronic-state evolution

$$i\hbar\partial_{t}\rho_{1} - (\hbar\omega - i\Gamma)\rho_{1} = [\bar{\mathcal{H}}_{k}, \rho_{1}] + \frac{ev_{f}}{2\omega}[\mathrm{H}_{\Phi}, \rho_{k}],$$
$$i\hbar\partial_{t}\rho_{2} - (2\hbar\omega - i\Gamma)\rho_{2} = [\bar{\mathcal{H}}_{k}, \rho_{2}] + \frac{ev_{f}}{2\omega}[\mathrm{H}_{\Phi}, \rho_{1}].$$

The dynamics of the electronic state excited by photons can be obtained by solving these two linear ordinary differential equations as a steady state problem (*i.e.*, $\partial_t \rho_1 = 0$, $\partial_t \rho_2 = 0$), yielding

$$\rho_1{}^{ij} = -\left(\frac{ev_f}{2\omega}\right) \frac{[\mathrm{H}_{\Phi}, \rho_k]_{ij}}{\hbar\omega + \epsilon_{ij} - i\Gamma'}$$

$$\rho_2{}^{ij} = -(\frac{ev_f}{2\omega})\frac{[\mathrm{H}_{\Phi},\rho_1]_{ij}}{2\hbar\omega + \epsilon_{ij} - i\Gamma}.$$

The induced electric current is defined as

$$j_e = ve \sum_{BZ} \operatorname{tr}(\rho \frac{\partial \overline{\mathcal{H}}_p}{\partial p}) = \sigma_1 E e^{i\omega t} + \sigma_2 E^2 e^{i2\omega t} + c.c + \cdots.$$

where $\nu = 2$ describes the spin degeneracy and σ_1 is the linear optical conductivity. We have confirmed that our result for σ_1 is exactly the same as that in former literature on BLG using the Kubo formula. Here we focus on the second order nonlinear optical conductivity σ_2 , which stimulates SHG. The result is

$$\sigma_{2}^{\alpha} = 2e \sum_{BZ} tr\left(\rho_{2} \frac{\partial \overline{\mathcal{H}}_{p}}{\partial p_{\alpha}}\right) = 2ev_{f} \sum_{K,K'} tr(\rho_{2}\eta_{\Phi}^{\alpha})$$
$$= \frac{e^{3}v_{f}^{2}}{8\pi^{2}\omega^{2}} \int_{BZ} \sum_{ijl} \left[\frac{\rho_{k}^{ii} - \rho_{k}^{ll}}{\hbar\omega + \epsilon_{i} - \epsilon_{l} - i\Gamma} - \frac{\rho_{k}^{ll} - \rho_{k}^{jj}}{\hbar\omega + \epsilon_{l} - \epsilon_{j} - i\Gamma}\right] \frac{(H_{\Phi})_{il} (H_{\Phi})_{lj} (\eta_{\Phi}^{\alpha})_{ji}}{2\hbar\omega + \epsilon_{i} - \epsilon_{j} - i\Gamma} d\mathbf{k}.$$

Here $\eta_{\Phi}^{\alpha} = \frac{\partial \mathcal{H}_p}{\partial p_{\alpha}} = v_f \Phi^{\dagger}(I \otimes \sigma_{\alpha}) \Phi$ for Dirac cone K and $\eta_{\Phi}^{\alpha} = v_f \Phi^{\dagger}(I \otimes \sigma_{\alpha}^*) \Phi$ for K'. i, j, l = 1,2,3,4 and the integration over k is performed in the vicinity of K or K'. $\alpha = x, y$ represents the axis direction in the graphene plane.

2. Effects of Γ

We set $\Gamma = 0.05$ eV in our calculation in the main text. The value of Γ affects the magnitude of the second order optical conductivity significantly. In Fig. 1S. we show σ_2 as a function of Γ and the incident laser frequency ω . The incident laser is polarized along the x direction and T=30K. Apparently, the signal intensity becomes larger when the relaxation time of the excited electronic state becomes longer, i.e., smaller Γ .

3. Effects of the direction of the in-plane DC current

To achieve SHG, we have to apply an in-plane electric field. In the main text, we apply an in-plane current along the y direction as an example. In general, the direction of the field is not unique. One can obtain giant optical nonlinear conductivity by inducing a current in any direction in the 2D atomic plane. This is important in practice because the in-plane current may not lie in the y direction defined by the atomic structure (See Fig.1 in the main text). Here we show the results for a different direction (-y') of the in-plane current with a linearly polarized incident laser at T=30 K (See Fig. 2S). We show that it is the direction of the DC current that determines the symmetric axis for second order optical conductivity (Fig. 2S c and d).

4. Intrinsic processes at 0.4eV peak

Here we show that the double resonant enhanced peak at $\omega = 0.4$ eV arises from two different transitions, i.e., 1-3 (transition from the 1st band to the 3rd band) and 2-4 (transition from the 2nd band to the 4th band). Figure 3S plots the contribution from both processes respectively at T=30K without band gap opening. We can see that both processes contribute to an enhanced second order optical nonlinearity and the ratio between the 1-3 and 2-4 processes is about 1:2. We note that the ratio is almost invariant

with temperature.

5. Intrinsic processes at 0.2eV peak

The resonance peak at $\omega = 0.2 \text{eV}$ also arises from two different transition processes, i.e., 3-4 process and 2-3 process. In the situation described in our scheme, the 2-3 process is the leading one (see Fig. 4S **a** and **b**). The resonance peak of the 2-3 process has a shift from 0.2 eV as temperature increases (Fig. 4S **a**), arising from the interplay of temperature T, Fermi level shifting Δk and energy band broadening Γ . This effect leads to the shift of the resonant position of the 2-3 transition toward the Dirac point, which corresponds to an obvious shift of the peak in the spectrum. We plot the shift amount $\Delta \omega$ as a function of temperature when $\Delta k = 0.01 \text{eV}$ and $\Gamma=0.05 \text{eV}$ in Fig. 4S **c**.

Figure 1S | Effects of relaxation time of excited states on SHG. The incident laser is linearly polarized and T=30 K. Blue line denotes the second order optical conductivity in the y direction and red in the x direction.

Figure 2S | Effect of the direction of in-plane electric field on SHG. **a**, Atomic structure of BLG. (x,y) and the coordinates used for tight-binding model. (-y') is the direction of the DC current as shown in **b**. **b**, Normal device scheme of BLG, which determines the direction of the current, which is usually not along the axis of the coordinates (x,y) in **a**. The deviation is described by an angle θ . **c** and **d**, polar plots of the intensity of the second order optical conductivity in the x' and y' direction at T=30 K for incident laser frequency (**c**) $\omega = 0.2$ eV and (**d**) $\omega = 0.4$ eV. We can see that the direction of the inplane field determines the symmetric axis (shown by θ) of the optical nonlinearity. Polar angle is the polarization angle of the incident beam starting from the x-axis.

Figure 3S | Contributions to the second order optical nonlinearity at $\omega = 0.4$ eV from 1-3 and 2-4 transitions, respectively. Laser is left handed polarized and Temperature is set to be 30K.

Figure 4S | Contributions to the second order optical nonlinearity at $\omega = 0.2$ eV from 2-3 and 3-4 transitions, respectively (**a** and **b**). We can clearly see that the transition is dominated by the 2-3 process. The peak position has a shift $\Delta \omega$ under increasing temperature, plotted in **c**.

Reference:

- (1) Neto, A. H. C., *et al.*, The electronic properties of graphene, *Rev. Mod. Phys.* **81**, 109 (2009).
- (2) Hendry, E., et al, Coherent Nonlinear Optical Response of Graphene, *Phys. Rev. Lett.* **105**, 097401 (2010)
- (3) Landau, L. D., & Lifshitz, E. M. (1977). Quantum Mechanics, Non-Relativistic Theory: Volume 3. Oxford: Pergamon Press. pp. 41. ISBN 0080178014.; Sakurai, J.J., Modern Quantum Mechanics, revised edition, by Addison-Wesley Publishing Company, Inc. 1994
- (4) Nandkishore, R., & Levitov, L., Polar Kerr Effect and Time Reversal Symmetry Breaking in Bilayer Graphene, *Phys. Rev. Lett.* **107**, 097402 (2011)
- (5) Yang, H., Feng,X., Wang, Q., Huang, H., Wei Chen, W., Wee, A. T. S., & Ji, W., Giant Two-Photon Absorption in Bilayer Graphene, *Nano Lett.*, 11 (7), pp 2622–2627, (2011).
- (6) Zhang L. M., *et al*, Determination of the electronic structure of bilayer graphene from infrared spectroscopy, *Phys. Rev. B* **78**, 235408 (2008)
- (7) Zou K., *et al*, Effective mass of electrons and holes in bilayer graphene: Electron-hole asymmetry and electron-electron interaction, Phys. Rev. B 84, 085408 (2011)