
Supplemental Materials 
 

Quantum-Enhanced Tunable Second-Order Optical Nonlinearity in Bilayer 
Graphene 

 
Sanfeng Wu1, Li Mao2, Aaron M. Jones1, Wang Yao3, Chuanwei Zhang2, Xiaodong 

Xu1,4* 

 

1 Department of Physics, University of Washington, Seattle, Washington 98195, USA 
2 Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164 USA 
3 Department of Physics and Center of Theoretical and Computational Physics, The University of Hong 
Kong, Hong Kong, China 
4 Department of Material Science and Engineering, University of Washington, Seattle, Washington 98195, 
USA 
*Email: xuxd@uw.edu 
 
1. Theory for second order optical conductivity  
       Considering the applied potential bias between top and bottom gates, the electronic 
Hamiltonian near the Dirac points (K and K’ ) is1: � = 	 ∑���ℋ� ��,                  
where ��� = (����, ����, ����, ����), 
and 
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����(����)  is the creation operator for electrons at the sublattice A (B), in the layer ��i = 1,2�, and with momentum k in the BZ. 	k = (k�, k	) is the continuous wave vector 

from K, K′and g = k� − ξ	i	k	 is a complex number (ξ = +1 for K and ξ = −1 for K′). 
The Fermi velocity ��  is determined by the intra-layer hopping energy 
 ≈ 2.8	�� 
between nearest neighbors. � is the lattice constant of graphene. � ≈ 0.4	�� is the inter-
layer hopping parameter between �� and ��. We ignore other hopping processes due to 
their relatively weak strengths. The diagonal items ±
  come from the potential bias 
between the two graphene-layers. Diagonalizing the Hamiltonian, we can obtain the 
energy spectrum with four branches near the Dirac point1. 
 
      The interaction between light and BLG can be described by replacing the momentum 
vector ℏ� with1 

� = ℏ� + ��, 
where � = 	−�/(�ω) is the vector potential of the incident laser beam. As an example, if 

the incident laser is a circularly polarized beam	σ� , then E =
����

��
�1, −i�+ c. c. The 

interaction between laser and electrons (~1meV) is weak compared to the system energy 
scale (~0.1eV), therefore we can write the total Hamiltonian under band representation as 



ℋ�� = ℋ�� + �����
���

��
H�. 

where H� = Φ�[�⨂(�� − �ξ��)]Φ for a circularly polarized beam	��. � is a 2 × 2 unit 
matrix.  � = (��,��) is the vector of Pauli matrixes. Φ is the initial eigenstate without 
the laser-field satisfying ℋ�� = Φ�ℋ�Φ = diag[ �,  �,  �,  �] , where  �(� = 1,2,3,4)  is 
the energy of the ith band.  
 
        The evolution of electronic states is determined by the quantum Liouville equation2,3 

�ℏ!�" = #ℋ��, "$ − �Γ(" − "(% = 0)), 
where "  is the time dependent quantum state of electrons with momentum �  at 
temperature & and chemical potential '. Γ describes the electronic relaxation time4,5. The 
linear and nonlinear optical response of " to the optical fields can be obtained by solving 
the Liouville  equation  perturbatively   " = "� + #"��%����� + (. ($) + ["��%������ + (. (])� +⋯. 
The initial state "� = diag	[*�, *�, *�, *�] is the initial state obtained from the Fermi-Dirac 

distribution *� = �

��	[(����)/���]��
 of electrons .  

       As we mentioned in the main text, the SHG does not exist unless there is an in-plane 
electric field. According to semi-classical electron transport theory, if there is an in-plane 
electric field ℰ , the Fermi surface is shifted by wavenumber Δ� = �+ℇ/ℏ = ,∗� /ℏ 
along the direction opposite the electric field owing to the negative electron charge. + is 
the relaxation time, ,∗ is the electronic effective mass and �  is the drift velocity. This 
process is responsible for the leak current -!" = σ#"ℰd measured by the ammeter, where 
d is the sample length perpendicular to the electric field, assuming a rectangular sample 
shape. Replacing �  with the electronic mobility .$ = |� /ℰ|, we have 

ℏΔ� =
,∗.$-!"
σ#"d

. 

According to experimental data of BLG6,7, we choose ,∗ ≈ 0.05,� ,.$ ≈ 1
$	

%&
, σ#" ≈

�	

ℏ
, �� ≈ 10',/, then ℏ��Δ� ≈ 0.01�� for a leak current -!" ≈ 8	μA/μ, (corresponding 

to ℰ ≈ 2000V/m).  
 
      As a result of the shift of the Fermi surface, the initial electronic state in the presence 
of the in-plane applied current turns out to be "� ⟵ "��(�. 
Substituting this into the quantum Liouville equation, we obtain the first order and second 
order equations for the electronic-state evolution 

�ℏ!�"� − (ℏ/ − �Γ)"� = 0ℋ��, "�1+ ���
2/ 0H�, "�1, 

�ℏ!�"� − (2ℏ/ − �Γ)"� = 0ℋ��, "�1+ ���
2/ 0H�, "�1. 

The dynamics of the electronic state excited by photons can be obtained by solving these 
two linear ordinary differential equations as a steady state problem (i.e., !�"� = 0, !�"� =
0), yielding 
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      The induced electric current is defined as 

-� = 4�5 tr(" !ℋ��!� )
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where	4 = 2	describes	the	spin	degeneracy	and		σ�  is the linear optical conductivity. 
We have confirmed that our result for 	σ� is exactly the same as that in former literature 
on BLG using the Kubo formula. Here we focus on the second order nonlinear optical 
conductivity σ�, which stimulates SHG. The result is 
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Here :-, =
0ℋ


01�
= ��A�(B⨂�,)	A  for Dirac cone K  and :-, = ��A�(B⨂�,∗)	A  for K2 . 

i, j, l = 1,2,3,4 and the integration over C	is performed in the vicinity of K or	K2. D = E, F 
represents the axis direction in the graphene plane.  
 
2. Effects of G 
We set Γ = 0.05eV  in our calculation in the main text. The value of Γ  affects the 
magnitude of the second order optical conductivity significantly. In Fig. 1S. we show σ� 
as a function of Γ and the incident laser frequency ω. The incident laser is polarized 
along the x direction and T=30K. Apparently, the signal intensity becomes larger when 
the relaxation time of the excited electronic state becomes longer, i.e., smaller Γ. 
 
3. Effects of the direction of the in-plane DC current 
To achieve SHG, we have to apply an in-plane electric field. In the main text, we apply 
an in-plane current along the y direction as an example. In general, the direction of the 
field is not unique. One can obtain giant optical nonlinear conductivity by inducing a 
current in any direction in the 2D atomic plane. This is important in practice because the 
in-plane current may not lie in the y direction defined by the atomic structure (See Fig.1 
in the main text). Here we show the results for a different direction (−F’) of the in-plane 
current with a linearly polarized incident laser at T=30 K (See Fig. 2S). We show that it 
is the direction of the DC current that determines the symmetric axis for second order 
optical conductivity (Fig. 2S c and d).   
 
4. Intrinsic processes at 0.4eV peak 
Here we show that the double resonant enhanced peak at / = 0.4eV arises from two 
different transitions, i.e., 1-3 (transition from the 1st band to the 3rd band) and 2-4 
(transition from the 2nd band to the 4th band). Figure 3S plots the contribution from both 
processes respectively at T=30K without band gap opening. We can see that both 
processes contribute to an enhanced second order optical nonlinearity and the ratio 
between the 1-3 and 2-4 processes is about 1:2. We note that the ratio is almost invariant 



with temperature. 
 
5. Intrinsic processes at 0.2eV peak 
The resonance peak at / = 0.2eV also arises from two different transition processes, i.e., 
3-4 process and 2-3 process. In the situation described in our scheme, the 2-3 process is 
the leading one (see Fig. 4S a and b). The resonance peak of the 2-3 process has a shift 
from 0.2eV as temperature increases (Fig. 4S a), arising from the interplay of temperature 
T, Fermi level shifting ∆C and energy band broadening	Γ. This effect leads to the shift of 
the resonant position of the 2-3 transition toward the Dirac point, which corresponds to 
an obvious shift of the peak in the spectrum. We plot the shift amount ∆/ as a function 
of temperature when ∆C = 0.01�� and Γ=0.05eV in Fig. 4S c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 1S | Effects of relaxation time of excited states on SHG. The incident laser is 
linearly polarized and T=30 K. Blue line denotes the second order optical conductivity in 
the y direction and red in the x direction. 
 



 
 
Figure 2S | Effect of the direction of in-plane electric field on SHG. a, Atomic structure 
of BLG. (x,y) and the coordinates used for tight-binding model. ���’) is the direction of 
the DC current as shown in b. b, Normal device scheme of BLG, which determines the 
direction of the current, which is usually not along the axis of the coordinates (x,y) in a. 
The deviation is described by an angle θ. c and d, polar plots of the intensity of the 
second order optical conductivity in the x’ and y’ direction at T=30 K for incident laser 
frequency (c) ω � 0.2	eV and (d) ω � 0.4	eV. We can see that the direction of the in-
plane field determines the symmetric axis (shown by θ) of the optical nonlinearity. Polar 
angle is the polarization angle of the incident beam starting from the x-axis. 
 
 
 
 
 



 

 
 
Figure 3S | Contributions to the second order optical nonlinearity at ω � 0.4	eV from 1-3 
and 2-4 transitions, respectively. Laser is left handed polarized and Temperature is set to 
be 30K.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
Figure 4S | Contributions to the second order optical nonlinearity at ω � 0.2eV from 2-3 
and 3-4 transitions, respectively (a and b). We can clearly see that the transition is 
dominated by the 2-3 process. The peak position has a shift ∆�  under increasing 
temperature, plotted in c. 
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