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Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for
various important phenomena, ranging from atomic fine structure to topological condensed matter physics.
The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely
new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the
experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast
and coherent modulation of the laser intensities. We show that the many-body interaction between atoms,
together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to
spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the
long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC,
which show pronounced peaks and damping around the quantum critical point.

S
OC plays a major role in many important condensed matter phenomena and applications, including spin
and anomalous Hall effects1, topological insulators2, spintronics3, spin quantum computation, etc. In the
past several decades, there has been tremendous efforts for developing new materials with strong SOC and

new methods for tuning SOC with high accuracy for spin-based device applications4,5. However, the SOC strength
in typical solid state materials (e.g., ,104 m/s in semiconductors) is generally much smaller than the Fermi
velocity of electrons (,106 m/s), and its tunability is also limited and inaccurate.

On the other hand, the recent experimental breakthrough on the realization of SOC for ultra-cold atoms6

provides a completely new platform for exploring SOC physics in both BEC7–12 and degenerate Fermi gases13–16. In
a degenerate Fermi gas, such SOC strength can be at the same order as (or even larger than) the Fermi velocity of
atoms. Because of the strong SOC, spins are not conserved during their motion and new exotic superfluids may
emerge. For instance, new ground state phases (e.g., stripes, phase separation, etc.) may be observed in spin-orbit
coupled BEC8–12 and new topological excitations (e.g., Weyl14 and Majorana13 fermions) may appear in spin-orbit
coupled Fermi gases. The observation and applications of these exciting phenomena require fully tunable SOC for
cold atoms to characterize the effects of SOC in various phases. Unfortunately, the strength of the SOC in the
experiment6 and other theoretical proposals17–20 is not tunable because the SOC strength is determined by the
directions and wavelengths, not the intensities, of the applied lasers.

In this report, we propose a scheme for generating tunable SOC for cold atoms through a fast and coherent
modulation of the Raman laser intensities21, which can be easily implemented in experiments. Such tunable SOC
for cold atoms provides a powerful tool for exploring new exotic Bose and Fermi superfluid phenomena. Here we
focus on a quantum phase transition (QPT)22 in a harmonic trapped BEC induced by the many-body interaction
between atoms and the tunable SOC strength. With the increasing SOC strength, there is a sharp transition for the
ground state of the BEC from a spin balanced (i.e., equally mixed) phase to a spin fully polarized phase beyond a
critical SOC strength (i.e., the quantum critical point). By mapping the spin-orbit coupled interacting BEC to the
well-known quantum Dicke model23,24, we obtain analytic expressions for the quantum critical point and
the corresponding scaling behaviors for the QPT, which agree well with the numerical results obtained from
the mean-field Gross-Pitaevskii (G-P) equation for the BEC.

The realization of QPT in the Dicke model using the spin-orbit coupled BEC opens the door for many
significant applications in quantum optics, quantum information, and nuclear physics25–27. Previously the
Dicke model has been studied in several experimental systems28–30, especially atoms confined in an optical cavity.
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However the coupling between atoms and optical cavity fields is very
weak, and the experimental observation of the QPT in the Dicke
model only occurred recently using the momentum eigenstates for
a BEC confined in a cavity31. Compared with the cavity scheme, the
spin-orbit coupled BEC utilizes the many-body interaction between
atoms and has the advantage of essentially no dissipation, fully tun-
able parameters, very strong coupling, and the use of atom internal
states, thus provides an excellent platform for exploring Dicke model
related applications.

Finally, the QPT is characterized using collective oscillations of the
BEC, such as the center of mass (COM) motion and the scissors
mode, where the oscillation periods show pronounced peaks at the
quantum critical point. Furthermore, the oscillations of the BEC have
regular periodic patterns in both spin balanced and polarized phases,
but show strong damping in the transition region.

Results
System and hamiltonian. The harmonic trapped BEC in conside-
ration is similar as that in the recent benchmark experiment6. For
simplicity, we consider a two-dimensional (2D) BEC in the xy plane
with a strong confine ment (with a trapping frequency vz) along the z
direction. Such 2D setup does not affect the essential physics because
the z direction is not coupled with the SOC. Two hyperfine ground
states j"æ ; jF 5 1, mF 5 21æ and j#æ ; jF 5 1,mF 5 0æ of 87Rb atoms
define the spins of atoms, which are coupled by two Raman lasers
(with Rabi frequencies V1 and V2) incident at a p/4 angle from the x
axis, as illustrated in Figs. 1a and 1b.

The dynamics of the BEC are governed by the nonlinear G-P
equation

i LW
�
Lt~ p2

�
2mzV rð Þ þ HszHI

� �
W, ð1Þ

under the dressed state basis �:
�� �~ exp ik1

:rð Þ :j i, �;
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ik2
:rð Þ ;j i, where k1 and k2 are the wavevectors of the lasers. W 5

(W", W#)T is the wavefunction on the dressed state basis and satisfies
the normalization condition # dxdy(jW"j2 1 jW#j2) 5 1. The harmonic
trapping potential V rð Þ~ 1

2 mv2
y g2x2zy2ð Þ, where vy is the trapping

frequency in the y direction, and g 5 vx/vy is the ratio of the trap-
ping frequencies. HS 5 cpxsz 1 Vsx/2 is the coupling term induced
by the two Raman lasers with sz and sx as the Pauli matrices. The
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wavelength of the Raman lasers. The Raman coupling constant
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mean field nonlinear interaction term HI 5 diag (g""jW"j2 1 g"#jW#j2,
g"#jW"j2 1 g##jW#j2), where the inter-and intraspin interaction con-
stants g""5 g"#5 4p 2N(c0 1 c2)/maz and g##5 4p 2Nc0/maz, c0 and

c2 describe the corresponding s-wave scattering lengths32, N is the
atom number, and az~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p =mvz

p
.

Because the SOC strength c is determined by the laser wavevector
kL, the SOC energy can be comparable to or even larger than other
energy scales (e.g., the Raman couplingV) in the BEC. In a Fermi gas,
c can be larger than the Fermi velocity of atoms. Unfortunately, due
to the same reason, c cannot be easily adjusted in experiments, which
significantly restricts the applications of the SOC in cold atoms. Note
that although theoretically it may be possible to tune the SOC
strength by varying the angle between two Raman beams, experi-
mentally it is impractical because of many limitations of the experi-
mental setup.

Tunable SOC for cold atoms. We propose a scheme for tuning the
SOC strength c through a fast and coherent modulation of the
Raman coupling V~V0z~V cos vtð Þ that can be easily realized in
experiments by varying the Raman laser intensities. For ~VwV0, V
changes sign at certain time, which can be achieved by applying a p
phase shift on one Raman laser. Here the modulation frequency v is
chosen to be much larger than other energy scales in Eq. (1). In
this case, the Hamiltonian in Eq. (1) can be transformed to a
time-independent one using a unitary transformation y~exp
i~Vsin vtð Þsx= 2vð Þ
� 	

W. After a straightforward calculation with the
elimination of the fast time-varying part in the Hamiltonian33,34, the
nonlinear G-P equation (1) becomes
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where the Raman coupling becomes �HS~ceff pxszz V0sx=2 with
the effective SOC strength

ceff ~cJ0 ~V
�

v

 �

: ð3Þ

Here J0 is the zero order Bessel function. Clearly, ceff can be tuned
from the maximum c without the modulation to zero with a strong

modulation. The mean field interaction term �HI~a y:
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Quantum phase transition. The tunable SOC, in combination with
the many-body interaction between atoms, can drive a quantum
phase transition between different quantum ground states in a
harmonic trapped BEC. Here the ground state of the BEC is
obtained numerically through an imaginary time evolution of the
G-P equation (2). A typical density profile of the ground state is
shown in Fig. 1c, which has a Thomas-Fermi shape, similar as that
in a regular BEC. However, the momentum distribution of the BEC
has a peak around the single particle potential minimum located at

(Kx, Ky) 5 (2Kmin, 0) (see Fig. 1d), where Kmin~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

eff {V2
0

�
4c2

eff

q
and the degeneracy between 6Kmin is spontaneously broken.

To characterize the ground state of the spin-orbit coupled BEC, we
calculate the spin polarization jÆszæj 5 j# dr(jy"j2 2 jy#j2)j, and
sxh i~2Re

Ð
dry�:y;. Here we choose the absolute value of Æszæ

because the two degenerate ground states at 6Kmin have opposite
Æszæ due to the spinmomentum locking term pxsz and they are spon-
taneously chosen in experiments. In Fig. 2a, we plot jÆszæj and Æsxæ
with respect to ceff. For a small ceff, the spin up and down atoms have
an equal population, thus Æszæ 5 0, Æsxæ 5 21, i.e., the spin balanced

Figure 1 | An illustration of the experimental scheme for realizing SOC
for cold atoms6. (a) Laser setup. (b) Atom laser coupling. (c) A typical

density distribution of one spin component of the BEC in the ground state.

(d) Corresponding momentum distribution. The vertical and horizontal

dotted lines are kx 5 0 and ky 5 0 respectively.
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phase. Beyond a critical point cc
eff , the spin population imbalance

increases dramatically and reaches the spin polarized phase Æszæ 5

1 (Æsxæ 5 0) within a small range of ceff. The spin balanced and spin
polarized phases at small and large ceff can be understood from the
single particle Hamiltonian �Hs, where the Raman coupling V0sx/2
and SOC ceff pxsz dominate at the small and large ceff respectively.
More numerical results show that the critical transition point occurs
at cc

eff ~
ffiffiffiffiffiffiffiffiffiffiffi
V0=2

p
.

The QPT from spin-balanced to spin polarized phases can be
understood by mapping the spin-orbit coupled BEC to the quantum
Dicke model. For an interacting BEC in a harmonic trap with a large
atom number N (so that the mean field theory works), all atoms are
forced to occupy the same many-body ground state (i.e., the state in
Fig. 1c). Therefore the energy variation for the change of the spin
(e.g., spin flip) of one atom need be determined by the coupling
between the atom spin and the many-body ground state mode.
This is very different from an non-interacting BEC where atoms
do not affect each other, but the same as that for many atoms inter-
acting with a single photon mode in an optical cavity23. Treating the
interacting many-body ground state as a single mode composed of
different harmonic trap modes, we can map the Hamiltonian for the
spin-orbit coupled BEC to

H~ vxNa{az V0Sxz
ceff

ffiffiffiffiffiffiffiffiffiffiffiffi
m vx
p
ffiffiffi
2
p a{{a

� �
Sz{S{ð Þ, ð4Þ

which is similar to the Dicke model for two-level atoms coupled with
a cavity field23. Sx,y,z are the large spins for all atoms, S1 5 Sy 1 iSz, S2

5 Sy 2 iSz, a{a is a harmonic trap mode, a~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvx=2

p
xzipx=mvxð Þ. In the mapping to the Dicke Hamiltonian (4), we

neglect two minor effects of the interaction terms in Eq. (2): 1) a
constant mean field background energy term that does not affect the
dynamics; 2) a small term kS2

z

�
N2 with k , g## 2 g"". The second

term can shift the Dicke phase transition point. However, for realistic
experimental parameters for 87Rb, k is very small and the effects of
kS2

z

�
N2 can be neglected, as we confirm in the numerical simulation

of the G-P equation. Nevertheless, these minor effects cannot be
captured by the non-interacting BEC. The QPT from spin-balanced
to spin-polarized phases in the spin-orbit coupled BEC is similar to

that from normal to superradient phases in the Dicke model. The
critical point for the QPT can be derived from the standard mean-
field approximation24, yielding the relation cc

eff ~
ffiffiffiffiffiffiffiffiffiffiffi
V0=2

p
, which is

exactly the same as that from numerically simulating the G-P equa-
tion (2). Clearly, the QPT can also be driven by varying V0 for a fixed
ceff. Just beyond the critical point cc

eff , the Dicke model predicts that
the scaling of the order parameters is szh ij j~2 Szj j=N~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{ cc
eff

.
ceff Þ4


r
, sxh i~2Sx=N~{ cc

eff

.
ceff


 �2
for ceff §cc

eff ,

and jÆszæj 5 0, Æsxæ 5 21 for ceff vcc
eff . Such scaling behaviors are

confirmed in our numerical simulation of the G-P equation (see
Fig. 2a). The perfect match between numerical results from the G-
P equation and the predictions of the Dicke Hamiltonian shows the
validity of the mapping to the Dicke model.

We emphasize that the many-body interaction between atoms in
Eq. (2) plays a critical role in the QPT by forcing all atoms in a single
spatial mode. For a non-interacting BEC, the atoms can occupy both
6Kmin in the momentum space with an artificial ratio because these
two states are energetically degenerate and there is no correlation
between atoms. The resulting spatial distribution of the BEC is thus
artificial and the above single spatial mode approximation in Eq. (4)
does not apply. Our numerical simulation of the G-P equation with-
out interactions also shows Æszæ 5 0 or other random values in
certain region of ceff wcc

eff , which disagrees with the prediction of
the Dicke model. This disagreement confirms that atoms in a non-
interacting BEC do not response to the change of ceff collectively,
although non-interacting and interacting BECs share the same trans-
ition for the energy spectrum at cc

eff , which changes from one single
minimum at Kx 5 0 to two minima at 6Kmin. While for interacting
BECs with large atom numbers N 5 4 3 104 and 106, we obtain
exactly the same results as that in Fig. 2a, which further confirm
the validity of our mapping to the Dicke model in the large N limit.

Collective dynamics in BEC: the signature of QPT. It is well-known
that various physical quantities may change dramatically around the
quantum critical point (i.e., critical phenomena), which provides
additional experimental signatures of the QPT. We focus on two
types of collective dynamics of the ground state of the BEC: the
COM motion and the scissors mode induced by a sudden shift or
rotation of the harmonic trapping potential, respectively. In a regular
BEC without SOC, the COM motion is a standard method to
calibrate the harmonic trapping frequency because the oscillation
period depends only on the trapping frequency35 and is not
affected by other parameters such as nonlinearity, shift direction
and distance, etc.

We numerically integrate the G-P equation (2) and calculate the
COM Ær(t)æ 5 # dxdy(jy"(t)j2 1 jy#(t)j2)r(t). The COM motion
strongly depends on the direction of the shift D

!
of the harmonic

trap. When D
!

is along the y direction, the period of the COM motion
along the y direction is T0 5 2p/vy and not affected by ceff, while the
COM motion in the x direction disappears (i.e., Æxæ 5 0). Here the
COM period T is obtained through the Fourier analysis of Ær (t)æ. The
physics is very different when D

!
is along the x direction, where Æy (t)æ

5 0 as expected, but Æx (t)æ depends strongly on ceff, as shown in
Fig. 2b. In Fig. 3, we also plot T as a function of ceff and V0. Without
SOC (ceff 5 0), T 5 T0, the period for a regular BEC, as expected. T
increases with ceff in the spin-balanced phase, but decreases when
spin starts to be polarized, leading to a sharp peak at the quantum
critical point cc

eff . The oscillation of Æx (t)æ in the spin balanced phase
is completely dissipationless, while a strong damping occurs in a
small range of ceff beyond cc

eff (see the inset in Fig. 3). Far beyond
cc

eff , the oscillation becomes regular again with the period T 5 T0

because the ground state has only one component in this region. The
peak and the damping of the oscillation around cc

eff provide clear
experimental signatures for the QPT. Moreover, T also depends on

Figure 2 | Quantum phase transition with tunable ceff. V0 5 16, c 5 9.37

is the bare SOC strength without modulation. (a) Plot of the spin

polarization | Æszæ | and Æsxæ in the ground state. The blue and red lines are

from the prediction of the Dicke Hamiltonian. The circles and squares are

from the numerical simulation of the G-P equation (2). (b) Plot of the

COM motion period T. The shift of the harmonic trap D 5 1, T0 5 2p/vy .

www.nature.com/scientificreports
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the magnitude D of the shift near the critical point cc
eff : the larger D,

the smaller T.
Another collective dynamics, the scissors mode36, shows a similar

feature as the COM motion. The scissors mode can be excited by a
sudden rotation of the asymmetric trapping potential (i.e., g ? 1) by
an angle h, which induces an oscillation of the quantity Æxyæ 5
# dxdy(jy" (t)j2 1 jy# (t)j2xy. Without SOC, the period of the scissors

mode is T1~2p


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xzv2
y

q 36
, as observed in experiments37. In

Fig. 4, We plot the oscillation period T with respect to ceff for three
different V0. We have confirmed that the same QPT occurs for jÆszæj
and Æsxæ of the ground state in this asymmetric potential with the
quantum critical point cc

eff ~
ffiffiffiffiffiffiffiffiffiffiffi
V0=2

p
, as predicted by the Dicke

model. Similar as the COM motion, we observe the peak and damp-
ing of the oscillation around cc

eff . Far beyond cc
eff , the oscillation

period is T1. Similar as the dependence of the COM motion on the
shift distance D, the angle h also influences the period of the scissors
mode near cc

eff : the smaller h, the larger T.

Discussion
In summary, we show that the SOC strength in the recent break-
through experiment for realizing SOC for cold atoms can be tuned
through a fast and coherent modulation of the applied laser intens-
ities. Such tunable SOC provides a powerful tool for exploring

spin-orbit coupled superfluid physics in future experiments. By vary-
ing the SOC strength, the many-body interaction between atoms can
drive a QPT from spin balanced to spin polarized ground states in a
harmonic trapped BEC, which realizes the long-sought QPT from
normal to superradient phases in the quantum Dicke model and may
have important applications in quantum information and quantum
optics.

Methods
We choose the physical parameters to be similar as those in the experiment6: (vy,vz)
5 2p 3 (40, 400) Hz, g 5 1, l 5 804.1 nm, c0 5 100.86aB, c2 5 20.46aB

38 with the
Bohr radius aB, N 5 1 3 104, v 5 2p 3 4.5 kHz. For the numerical simulation, we
need a dimensionless G-P equation that is obtained by choosing the units of the

energy, length and time as vy,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

mvy
� �q

~1:7mm, and 1/vy 5 4 ms, respectively.
The dimensionless parameters in the G-P equation become c~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mvy
� �q

kL~9:37,

a~2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmvz=

p
c0zc2ð Þ~495 and b~{N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmvz=

p
c2~1:14.

Note added. After our manuscript was initially posted at arXiv (arXiv:1111.4778), our
proposed peaks of the dipole oscillation periods (Figs. 2b and 3) were observed
experimentally39, and more detailed theoretical studies were also performed40.
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