Addressing issues listed in the Standish report:
We have tried to address a couple of issues stated in Standish report, the report gives a few ideas that could be used to mitigate the major risks that are generally the cause of failure in most of the projects.
1. Incomplete, ambiguous and confusing requirements

The first step is to recognize that there are several types of requirements, all legitimate and all necessary. A second step is to educate all project participants about key requirements engineering concepts, terminology, and practices.

At the top are the business requirements, representing the high-level objectives of the organization or customer requesting the system or product. They describe how the world will be better if the new product is in it. Record business requirements in a product vision and scope document.

The second level addresses the user requirements, which describe the tasks that users must be able to perform using the new product. These are best captured in the form of use cases, which are stories or scenarios of typical interactions between the user and the system. However, the use cases alone often don’t provide enough detail for developers to know just what to build. Therefore, derive specific software functional requirements—the third requirements level—from the use cases. The functional requirements itemize the specific behaviors the software must exhibit.

The software requirements specification (SRS) serves as a container for both the functional requirements and the nonfunctional requirements. The latter include quality attribute goals, performance objectives, business rules, design and implementation constraints, and external interface requirements. Quality attributes (such as usability, efficiency, portability, and maintainability) need to be elicited from users, along with the use cases.

Avoid using intrinsically subjective and ambiguous words when you write requirements.

To ferret out ambiguity, have a team that represents diverse perspectives formally inspect the requirements documents. Suitable inspectors include:

1-the analyst who wrote the requirements

2-the customer or marketing representative who supplied them (particularly for use case reviews)

3-a developer who must implement them

4-a tester who must verify them

Another powerful technique is to begin writing test cases early in requirements development. Writing conceptual test cases against the use cases and functional requirements crystallizes your vision of how the software should behave under certain conditions. This practice helps reveal ambiguities and missing information, and it also leads to a requirements document that supports comprehensive test case generation.

[image: image1.emf]

User Requirements

Consider developing prototypes; they make the requirements more tangible than does a lifeless textual SRS. Create a partial, preliminary, or possible implementation of a poorly understood portion of the requirements to clarify gaps in your knowledge. Analysis models such as data flow diagrams, entity-relationship diagrams, class and collaboration diagrams, state-transition diagrams, and dialog maps provide alternative and complementary views of requirements that also reveal knowledge gaps.

Make sure you can trace every functional requirement back to its origin, such as a specific use case, higher-level system requirement, business rule, industry standard, or government regulation. If you don’t know where a requirement came from, question whether you really need it. Identify the user classes that will benefit from each feature or use case.

2. Inadequate user involvement

Begin by identifying various user classes. User classes are groups of users who differ in their frequency of using the product, the features they use, their access privilege level, or in other ways.

An effective technique is to identify individual "product champions" to represent specific user classes. Product champions collect input from other members of their user class, supply the user requirements, and provide input on quality attributes and requirement priorities.

This approach is particularly valuable when developing systems for internal corporate use; for commercial product development it might be easier to convene focus groups of representative users. Focus group participants can provide a broad range of input on desired product features and characteristics. The individuals you select as user representatives can also evaluate any prototypes you create, and review the SRS for completeness and accuracy.

What was done in our project to address the issue “Correct understanding of user needs”:

Our system use cases have been derived from the business use cases which reflected the business objectives of the system. The business objectives were determined by positioning ourselves in the business.
Business objectives: The business objectives for a software project state the business goals of the project and are used to drive the software requirements. Clearly defined business objectives are used in managing scope by ensuring that all of the requirements discovered truly meet the business objectives. Business objectives tie back to a financial gain for the business, either directly or indirectly through another metric.

Actor identification: For each feature, we identified the people or systems (actors) that will utilize the new software. Taking the actors point of view we ensured that key functionality is not missed and that the developed solution closely meets the functional and usability needs of the actors.

Use case discovery: Worked with the end users to discover the use cases, which are descriptions of the interactions between the system and the actors.. Use cases are important because they represent the system in a format that clearly explains how the functionality will be used. They allow for less ambiguity in developing the requirements, as the requirements are presented in the context of the usage.

_1238232903.vsd
User Requirements

