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Data is NO longer directly shared by the process components

Instead, each module provides interface
Other components access data only by invoking that interface (info. hiding)

System KWIC
global: Characters, Inde@lphabetizedlndex

module Input
operation read: data lines from the input medium
operation store: data lines by calling the "Setchar" of "Line Storage"
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module Line Storage ) )
create, access, and possibly delete characters, words, and lines. */

/* actual representations and processing algorithms are hidden */

procedure Setchar (I, w, c, d):

/* used by "Input" module;
causes the c-th character in the w-th word of the I-th line to be d;

HOW ARCHITECTURE WINS TECHNOLOGY WARSS$THE ART OF SYSTEMS ARCHITECTING

E.g., Setchar (1, 3, 3, "N")

Setchar (2, 4, 2, "Y")
The only routine needed by Input to store all the lines iwth no ambiguity */

function Char (I, w, c):
/* returns an integer representing the c-th character in the w-th word of the I-th line;

returns blank if out-of-range;
l.e., Char (I,w, c)=d
E.g., Char (1, 3, 3) ="N"
Char (2, 4,2) ="Y"*
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function Word (1):
/* returns the number of words in line |;
E.g., Word (1) =5
Word (2) =5 */
/* Char and Word are the only two routines needed by "Circular Shift" to reconstruct all the lineg
We are going deeper than needed here, but only once:
Circular Shift:
loop | := 1 to #lines do /* assume #lines from "Master Control"
#words := Line_Storage.Word (1)
loop w := 1 to #words do
charPos :=1
while Line_Storage.Char (I, w, charPos) ~= blank
l.w.c <- Line_Storage.Char (I, w, c)
charPos := +1

pool pool end
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module Circular_Shift
[* creates (virtual) lines of the circular shifts of the stored lines;
provides routines to access individual characters and words in the shifted lines */

procedure Setup /* get a title(s) using Char and Word of Circular Shift */

procedure CS-Setchar (s, w, c, €)
/* causes the c-th character in the w-th word of the s-th circular shift to be e */

CS-Setchar (1, 1, 1, "H")  CS-Setchar (2, 1, 1, "A") CS-Setchar (3, 4, 2, "O")
CS-Setchar (1, 5, 3, "R")  CS-Setchar (2, 3, 7, "L")
* Setup and CS-Setchar are the only routines to construct circular shifts*/

function CS-Char (s, w, ¢)
[* returns the c-th char in the w-th word in the s-th circular shift;

i.e., CS-Char (s,w,c)=e*
function CS-Word (s) /* returns the # of words in the s-th circular shift */
/* CS-Char and CS-Word are the only routines needed by "Alphabetizer"
to reconstruct the circular shifts of the lines */
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module Alphabetic_Shift (Alphabetizer)

/* creates alphabetized lines of the circular shifts using CS-Char and CS-Word;
provides routines to access shifted lines in alphabetical order*/

procedure Alpha

/* use Circular_Shift.CS-Char and Circular_Shift. CS-Word to
get shifted lines and create alphabetized lines */

procedure i-th
/* returns the (index of the) circular shift which comes i-tj in the ordering */

module Output
/* calls Alphabetizer.i-th to produce 1st, 2nd, ... KWIC index */

module Master_Control
/* as in modularization 1, but procedure calls between modules*/
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The KWIC Problem

[l Non-Functional Requirements

[1 modifiability --- changes in processing algorithms
e.g., line shifting: one at a time as it is read or
all after they are read or

on demand when the alphabetization requires
a new set of shifted lines

e.g., batch alphabetizer vs. incremental alphabetizer

modifiability --- changes in data representation
e.g., storing chacters, words and lines
(e.g., in 1-d array/2-d array/linked-array, compressed vs. uncompressed)

storing circular shifts explicitly or implicitly (as pairs of index and offset)
core storage vs. secondary storage

[] enhanceability --- additions of (enhancement fo) system function

e.g., to eliminate noise words
(e.g., "a", "an", "the", .. .. ._.in", "of", "with", “for",
. and”, "or", . Mt Myou”, it "they", ...)
the user deletes lines from the original or shifted lines T T
before "Output"?

(KWIC index for Unix manual - one line header for each command;
totalling about 5000 entries -> 5000 log 5000) -> inefficient
after "Circular Shift"?

(omitting about 150 noise words, only about 1000 entries -> 1000 log 1000)
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The KWIC Problem

[l Non-Functional Requirements

[] performance --- space and lime

[] space
- can be poorer than in Shared Data, due to duplication
(both "Circular_Shift" and "Alphabetizer” need a copy of everything ->
approx. 3 x |Charactersl)

[] response fime

- can be poorer than in Shared Data, due to reconstruction

[] reusability --- to what extent can the components serve as reusable enfifies?
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The architecture
O style: Abstract Data Type (ADT)
[ component: Objects & Data (per individual descriptions)
0O glue: Dpirect Memory Access Procedure Call system 1/0

[] constraint: Other components access data only by invoking that interface (info. hidi

O pattern:
Subprogram Call

System 1/O
Direct Memory Access

O rationale: (if selected, NFRs)
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