Modularization 3: Implicit Invocation

—= Subprogram Call
System I/0

» Implicit Invocation Master Control

Input Circular Shift Alphabetizer

Control

I-Lines CS-Lines

Component integration based on shared data
But,
the interface to the data is more abstract than in Shared Data (like in ADT)
i.e., storage formats are not exposed to computing modules,
but data are accessed abstractly (e.g., as a list or a set)
computations are invoked implicitly as data is modified, based on active data mode

System KWIC
module Input

operation read: data lines from the input medium
/through operation insert, a new line to the line buffer, "I-Lines" */

Lawrence

Modularization 3: Implicit Invocation

—= Subprogram Call
System I/0

» Implicit Invocation
Input Alphabetizer

i . Control
I-Lines CS-Lines

module Circular Shift
/* through operation i-th, read I-lines and produce shifted lines and
store them in a separate abstract line buffer, CS-lines */

module Alphabetizer

/* through operation (2nd) i-th, read CS-lines, produce alphabetized lines
and store them in a separate abstract line buffer, A-lines */

module Output /* access A-lines and print out */
module Master Control /* explicitly invokes Input and Output */

Question: How does Master Control know when to invoke Output?

Lawrence

The KWIC Problem

[l Non-Functional Requirements

[1 modifiability --- changes in processing algorithms
e.g., line shifting: one at a time as it is read or
all after they are read or

on demand when the alphabetization requires
a new set of shifted lines

e.g., batch alphabetizer vs. incremental alphabetizer

modifiability --- changes in data representation

e.g., storing chacters, words and lines
(e.g., in 1-d array/2-d array/linked-array, compressed vs. uncompressed)

storing circular shifts explicitly or implicitly (as pairs of index and offset)
core storage vs. secondary storage
enhanceability --- additions of (enhancement o) system function
e.g., to eliminate noise words
(eg. ", "an’, f'the"‘ "and”, "Of'.'l |n of" "V.Vith"' .':Flc'?r':"you" "it", "they", ...)
the user deletes lines from the original or shifted lines T '

performance --- space and fime _
+tend to use more space than previous ones for natural representations

- can be inefficient due to triggering (detection can be coslly)
reusability --- to what extent can the components serve as reusable entifies?

Modularization 3: Implicit Invocation

—= Subprogram Call
System I/0

» Implicit Invocation
Input Alphabetizer

i . Control
I-Lines CS-Lines

The architecture

O style: Implicit Invocation
[component: Processes & Data (Repository) (per individual descriptions)
0 glue: Subprogram Call System /0 Implicit Invocation

constraint: : o . . .
O computations are invoked implicitly as data is modified, based on active data model

[pattern:

Subprogram Call

System I/0

O rationale: (if selected, NFRs)

- can be difficult to control the order of processing

Lawrence

Modularization 4: Pipe and Filter

System I/0
..o Pipe

— == [Circular shift |- — — = [Alphabetizer - — —>

Each filter processes the input data and produces output data
Each filter can run whenever it has data on which to compute

Data sharing between filters is strictly limited to that transmitted on pipes

System KWIC
filter Input
filter Circular Shift
filter Alphabetizer
filter Output

Lawrence

The KWIC Problem

[l Non-Functional Requirements

[1 modifiability --- changes in processing algorithms

e.g., line shifting: one at a time as it is read or
all after they are read or

on demand when the alphabetization requires
a new set of shifted lines

e.g., batch alphabetizer vs. incremental alphabetizer

modifiability --- changes in data representation
e.g., storing chacters, words and lines
(e.g., in 1-d array/2-d array/linked-array, compressed vs. uncompressed)

storing circular shifts explicitly or implicitly (as pairs of index and offset)
core storage vs. secondary storage
enhanceability --- additions of (enhancement o) system function

e.g., to eliminate noise words

(e.g., "a", "an”, "the”, ,_ . . i, "of", "with", "for",
the user deletes lines from the original or shifted lines

- difficult to support an interactive system

[] performance --- space and fime

- inefficient use of space, as each filter must copy dll input data to its output port
. - inefficient, due to data replication (if not concurrent processing) .
reusability --- to what extent can the components serve as reusable entifies?

" Uit "they”, ..)

Summary

0 Tr ff analysi
adeoff analysis Shared ADT Implicit Pipe &

Data Invocation Filter

[algorithm] + + +

modifiability
[data rep.] + ++-

enhanceability [add function] t+

space
performance)
response time

reusability

intutitiveness

Ll Prioritize

e.g., enhanceability of highest priority
[] Other NFRs

e.g., intuitiveness

[1 More Scenario Analysis
e.g., Include + Omit

Lawrence

Reading Assignment

Sections 4.1 (Shared Information Systems) &
4.2 (Database Integration)
Section 3.2 (Instrumentation Software)

Lawrence

