
Computer Science Program, The University of Texas, Dallas

Lawrence Chung

Abstract Data Types (ADTs)

Why ADTs?

Main Concepts of ADTs

ADTs as Objects

Lawrence Chung

Why Abstract Data Types (ADTs)?

Why Module Interconnection Languages (MILs)?
"Programming-in-the-small vs. programming-in-the-large"

Programming-in-the-small Programming-in-the-small

Goal building "software"

Problem

building "programs"

Usually clear, small Usually unclear, large

sw. architecture Detailed design & impl.Emphasis

Technique Structured programming "divide & conquer"
"separation of concerns"

Notation PLs (Formal) (OO) Specification Lang.

Manpower single person/small number multi-person

Version usually single multi-version
� � � � � � � � � � 	 � � � � � �

✱ hiding the representations

localized change: change in detailed design & impl. does not affect other (client) objects

✱

✱ specifying the representations
conceptual consolution

decomposing problems into collections of interacting components (-> encapsulation)
conquering complexity

Lawrence Chung

Main Concepts of ADTs

☛ model system as a collection of ADTs

✆ algebraic specification

✆ model-theoretic (axiomatic) specification -> Z

☛ Larch is for Algebraic Interface Specification

☛ Each ADT includes:

✆ data objects

✆ operations on data objects

✆ essential properties of operations algebraic equations in FOL with equality

☛ Two-tiered approach to software development

✆ LCL - Larch Common Language

(specified as functions with domain and range)

(specified in algebraic equations in FOL with equality)

PL-independent notation for writing interface spec.

✆ LSL - Larch Shared Language

PL-dependent notation for writing interface spec.
LSLs exist for SmallTalk, Modula-3, C, C++, CLU, ...

☛ large library of predefined specs for common data types

["Larch: Languages and Tools for Formal Specification",
J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet & J. M. Wing,
Springer-Verlag, 1993]

☛ Larch theorem prover for correctness of properties

Lawrence Chung

☛

Main Concepts of ADTs

Example

Stack (E, C): trait
/* A trait describes an ADT, i.e., data objects, ops, properties of ops

& links to other ADTs */
/* E is an element (e.g., int, str, bool) of C, a container */

introduces
new: -> C
push: C, E -> C

isEmpty: C -> Bool
asserts

C generated by new, push
forall stk: C, e: E

top (push (stk, e)) == e
pop (push (stk, e)) == stk
isEmpty (new)
~ isEmpty (push (stk, e))

implies
LinearContainer (push for insert, top for first, pop for rest)

top: C -> E exempting top (new)
pop: C -> C exempting pop (new)

Lawrence Chung

☛

Main Concepts of ADTs

Questions

Stack (E, C): trait
/* A trait describes an ADT, i.e., data objects, ops, properties of ops

& links to other ADTs */
/* E is an element (e.g., int, str, bool) of C, a container */

introduces
new: -> C
push: C, E -> C

isEmpty: C -> Bool
asserts

C generated by new, push
forall stk: C, e: E

top (push (stk, e)) == e
pop (push (stk, e)) == stk
isEmpty (new)
~ isEmpty (push (stk, e))

implies
LinearContainer (push for insert, top for first, pop for rest)

top: C -> E exempting top (new)
pop: C -> C exempting pop (new)

☞ pop (top (new)) ==

☞ isEmpty (pop (push (new, 5))) ==

☞ first (rest (insert (insert (new, 10), 11))) ==

/* Assume new for new */

Obj

Obj

Obj

Obj

Obj

Manager

Procedure Call

Lawrence Chung

☛

ADTs as Objects

☛ Objects (also called "managers") are responsible for
preserving the integrity of their resources &
hiding the representations from other objects

☞
☞
☞ interactions take place mostly thru function and procedure invocations

Does Fortran/COBOL/C/Pascal offer subroutines for operations?
Does Fortran/COBOL/C/Pascal offer information hiding?

☛ encourages reuse (<- hiding & encapsulation)
☛ interaction via procedure call

☞ a (client) object should know the identity of another (server) object (cf. pipe&filter)

☞ change of an object identity necessitates modification of all other objects
that explicitly invoke it

