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Why Abstract Data Types (ADTs)?

Why Module Interconnection Languages (MILs)?
"Programming-in-the-small vs. programming-in-the-large"

Programming-in-the-small Programming-in-the-small

Goal building "software"

Problem

building "programs"

Usually clear, small Usually unclear, large

sw. architecture Detailed design & impl.Emphasis

Technique Structured programming "divide & conquer"
"separation of concerns"

Notation PLs (Formal) (OO) Specification Lang.

Manpower single person/small number multi-person

Version usually single multi-version
� � � � � � � � � � 	 � � � � � � 


✱ hiding the representations

localized change: change in detailed design & impl. does not affect other (client) objects

✱

✱ specifying the representations
conceptual consolution

decomposing problems into collections of interacting components (-> encapsulation)
conquering complexity
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Main Concepts of ADTs

☛ model system as a collection of ADTs

✆ algebraic specification

✆ model-theoretic (axiomatic) specification -> Z

☛ Larch is for Algebraic Interface Specification

☛ Each ADT includes:

✆ data objects

✆ operations on data objects

✆ essential properties of operations algebraic equations in FOL with equality

☛ Two-tiered approach to software development

✆ LCL - Larch Common Language

(specified as functions with domain and range)

(specified in algebraic equations in FOL with equality)

PL-independent notation for writing interface spec.

✆ LSL - Larch Shared Language

PL-dependent notation for writing interface spec.
LSLs exist for SmallTalk, Modula-3, C, C++, CLU, ...

☛ large library of predefined specs for common data types

["Larch: Languages and Tools for Formal Specification",
J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet & J. M. Wing,
Springer-Verlag, 1993]

☛ Larch theorem prover for correctness of properties
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☛

Main Concepts of  ADTs

Example

Stack (E, C): trait
/* A trait describes an ADT, i.e., data objects, ops, properties of ops

& links to other ADTs */
/* E is an element (e.g., int, str, bool) of C, a container */

introduces
new: -> C
push: C, E -> C

isEmpty: C -> Bool
asserts

C generated by new, push
forall stk: C, e: E

top ( push ( stk, e ) ) == e
pop ( push ( stk, e )) == stk
isEmpty (new)
~ isEmpty ( push ( stk, e ))

implies
LinearContainer (push for insert, top for first, pop for rest)

top: C -> E exempting top (new)
pop: C -> C exempting pop (new)
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☛

Main Concepts of  ADTs

Questions

Stack (E, C): trait
/* A trait describes an ADT, i.e., data objects, ops, properties of ops

& links to other ADTs */
/* E is an element (e.g., int, str, bool) of C, a container */

introduces
new: -> C
push: C, E -> C

isEmpty: C -> Bool
asserts

C generated by new, push
forall stk: C, e: E

top ( push ( stk, e ) ) == e
pop ( push ( stk, e )) == stk
isEmpty (new)
~ isEmpty ( push ( stk, e ))

implies
LinearContainer (push for insert, top for first, pop for rest)

top: C -> E exempting top (new)
pop: C -> C exempting pop (new)

☞ pop (top (new)) ==

☞ isEmpty (pop (push (new, 5))) ==

☞ first (rest (insert (insert (new, 10 ), 11 ))) ==

/* Assume new for new */

Obj

Obj

Obj

Obj

Obj

Manager

Procedure Call
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☛

ADTs as Objects

☛ Objects (also called "managers") are responsible for
preserving the integrity of their resources &
hiding the representations from other objects

☞
☞
☞ interactions take place mostly thru function and procedure invocations

Does Fortran/COBOL/C/Pascal offer subroutines for operations?
Does Fortran/COBOL/C/Pascal offer information hiding?

☛ encourages reuse (<- hiding & encapsulation)
☛ interaction via procedure call

☞ a (client) object should know the identity of another (server) object (cf. pipe&filter)

☞ change of an object identity necessitates modification of all other objects
that explicitly invoke it


