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Classical MILs

Why MILs?

Main Concepts of MILs

Trend in Industry

Goal building "software"

Problem

building "programs"

Usually clear, small Usually unclear, large

sw. architecture Detailed design & impl.Emphasis

Technique Structured programming "divide & conquer"
"separation of concerns"

Notation PLs (Formal) (OO) Specification Lang.

Manpower single person/small number multi-person

Version usually single multi-version
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Why Module Interconnection Languages (MILs)?

"Programming-in-the-small vs. programming-in-the-large"

Programming-in-the-small Programming-in-the-small
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Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires conquering complexity!

✰ Division of work

Only the owner team needs to know how to implement a particular part

✰ Multi-paradigm implementation

Different people are good at different PLs
Different PLs are good for different things
Different things are developed at different times

✰ Evolvable software
Impact of changes should be localized
change in data structure or algorithm should be hidden
change in PLs should be hidden (or localized -> wrapper)

✰ Information protection

Only on need-to-know basis

✰ Reuse of components (in the library)

Reduce development & verification effort

✰ Separate compilation

Can’t compile 1M LOC for each change
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Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires modular decomposition

Sw. architecture M1 M2 M3 M4
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Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires modular decomposition

Sw. architecture M1 M2 M3 M4
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Object module O1 O2 O3 O4

Executable

DD & Impl.

Separate compiln.

Linking
(static & dynamic)

Loading

But
✢ static type-checking & consistency checking at an intermediate level of descr.

e.g., M1 uses a variable V in M3

Is V defined in M3?
Is M1 allowed to access V

✢ controlling different versions, assembling components for a complete system
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Main Concepts of MILs

MILs provide formal grammar constructs
for various module interconnection specifications
for assembling a complete software system.

☛ The first MIL was developed in 1975
["Programming-in-the-Large versus Programming-in-the-Small",

DeRemer & Kron, IEEE TSE 2(1), June, 1976]

☛ Variations among different schemes
["Module Interconnection Languages",

Prieto-Diaz & Neighbors, The Journal of Systems and Software 6, 1986]

☛ Module structure called "System Tree"

✆ modules that provide/export/synthesize resources and require/import/inherit them

✆ a resource is any entity that can be named in a PL
(e.g., variables, constants, procedures, type defs)

✆ interface-oriented,
without details of how functions or modules are implemented
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Main Concepts of MILs

☛ Example

module ABC

provides: a, b, c /* resources defined in ABS - "statement of origin" */

requires: x, y /* resources used but not  in ABS - "statement of usage" */

consist-of: functiona XA, module YBC /* nesting of module */

function XA

provides: a

requires: x

has-access-to: module Z  /* any recource provided by Z */

real x, integer a

end XA

module YBC

provides: b, c

requires: a, y

real y, integer a, b, c

end YBC

end ABC
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Main Concepts of MILs

☛ Some constraints on accessibility

✁ has-access-to is not transitive

e.g., L <------------ M <---------- N does not mean L <----- N

✁ inheritance can be  all (e.g., XA can access both x, y) or
restricted (e.g., x only)

☛ Questions

✁ If L <------ M and M’ is a child of M, can M’ access L?

✁ If L <------ M and L’ is a child of L, can M access L’?
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Main Concepts of  MILs

☛ systems supporting module interconnection include:

✆ Ada (package), Module (module)

highly modular and provide for version definitions

✆ Protel (PRocedure Oriented Type Enforcing Language)

implemented in 1975 by BNR

used extensively but mainly by BNR

based on compile-link-load paradigm

performs type checking across modules

✆ SCCS (Source Code Control System)

part of PWB (Programmer’s Work Bench) facility

by Bell Labs in 1973

a file storage system for recording various versions of a text file

supports creation of any revision of a source program or text

file protection against accidental changes

✆ SARA (System ARchitect’s Apprentice)

supports a structural multi-level requirements-driven methodology
for the design of reliable sw or hw digital systems

developed at UCLA in 1976 and under continual development
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Trend in Industry

❂ "buy, don’t build"
[Brooks, "No silver bullet: Essence and Accidents of Software Engineering",
Computer 20(4), pp. 10-19, Apr. 1987]

faster (reduced development time)
increased reliability
increased flexibility

❂ increasing component size and complexity

e.g1., TPS at GTE (1000 small, 50 large)

e.g2., F-22 fighter aircraft

aircraft-specific delays

process scheduler

UIM

navigation algorithms

dbms

OS

compilers

network mgmt system aircraft-specific delays

ballistic eqns for free-ball bombs ballistic eqns for free-ball bombs

process scheduler
navigation algorithms
UIM

network mgmt system
OS compilers

dbms
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Trend in Industry

❂ coordination among components

coordination infrastructure & standards for components plug-in

e.g., CORBA

❂ from subroutines to subsystems
["Component-based Software Development",
American Programmer 8(11), Nov. 1995]

❂ architecture specification as a deliverable

"If a project has not achieved a system architecture, including its rationale,

the project should not proceed to full-scale system development." [Boehm]

increasing importance of sw. architecture and specification


