
Computer Science Program, The University of Texas, Dallas

Lawrence Chung

Classical MILs

Why MILs?

Main Concepts of MILs

Trend in Industry

Goal building "software"

Problem

building "programs"

Usually clear, small Usually unclear, large

sw. architecture Detailed design & impl.Emphasis

Technique Structured programming "divide & conquer"
"separation of concerns"

Notation PLs (Formal) (OO) Specification Lang.

Manpower single person/small number multi-person

Version usually single multi-version

Lawrence Chung

Why Module Interconnection Languages (MILs)?

"Programming-in-the-small vs. programming-in-the-large"

Programming-in-the-small Programming-in-the-small

Lawrence Chung

Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires conquering complexity!

✰ Division of work

Only the owner team needs to know how to implement a particular part

✰ Multi-paradigm implementation

Different people are good at different PLs
Different PLs are good for different things
Different things are developed at different times

✰ Evolvable software
Impact of changes should be localized
change in data structure or algorithm should be hidden
change in PLs should be hidden (or localized -> wrapper)

✰ Information protection

Only on need-to-know basis

✰ Reuse of components (in the library)

Reduce development & verification effort

✰ Separate compilation

Can’t compile 1M LOC for each change

Lawrence Chung

Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires modular decomposition

Sw. architecture M1 M2 M3 M4

� � � � � � � � � � � � 	
 � �
 � � � � � � � � � � � � � � � �

Object module O1 O2 O3 O4

Executable

DD & Impl.

Separate compiln.

Linking
(static & dynamic)

Loading

Lawrence Chung

Why Module Interconnection Languages (MILs)?

Programming-in-the-large requires modular decomposition

Sw. architecture M1 M2 M3 M4

� � � � � � � � � � � � � � ! " � ! � # $ $ % ! & ! ' � � (')

Object module O1 O2 O3 O4

Executable

DD & Impl.

Separate compiln.

Linking
(static & dynamic)

Loading

But
✢ static type-checking & consistency checking at an intermediate level of descr.

e.g., M1 uses a variable V in M3

Is V defined in M3?
Is M1 allowed to access V

✢ controlling different versions, assembling components for a complete system

Lawrence Chung

Main Concepts of MILs

MILs provide formal grammar constructs
for various module interconnection specifications
for assembling a complete software system.

☛ The first MIL was developed in 1975
["Programming-in-the-Large versus Programming-in-the-Small",

DeRemer & Kron, IEEE TSE 2(1), June, 1976]

☛ Variations among different schemes
["Module Interconnection Languages",

Prieto-Diaz & Neighbors, The Journal of Systems and Software 6, 1986]

☛ Module structure called "System Tree"

✆ modules that provide/export/synthesize resources and require/import/inherit them

✆ a resource is any entity that can be named in a PL
(e.g., variables, constants, procedures, type defs)

✆ interface-oriented,
without details of how functions or modules are implemented

ABC

YBCXAZ

a, b, c
x, y

x

a

b, c
a, y

has-access-to

Lawrence Chung

Main Concepts of MILs

☛ Example

module ABC

provides: a, b, c /* resources defined in ABS - "statement of origin" */

requires: x, y /* resources used but not in ABS - "statement of usage" */

consist-of: functiona XA, module YBC /* nesting of module */

function XA

provides: a

requires: x

has-access-to: module Z /* any recource provided by Z */

real x, integer a

end XA

module YBC

provides: b, c

requires: a, y

real y, integer a, b, c

end YBC

end ABC

ABC

YBCXAZ

a, b, c
x, y

x

a

b, c
a, y

has-access-to

Lawrence Chung

Main Concepts of MILs

☛ Some constraints on accessibility

✁ has-access-to is not transitive

e.g., L <------------ M <---------- N does not mean L <----- N

✁ inheritance can be all (e.g., XA can access both x, y) or
restricted (e.g., x only)

☛ Questions

✁ If L <------ M and M’ is a child of M, can M’ access L?

✁ If L <------ M and L’ is a child of L, can M access L’?

Lawrence Chung

Main Concepts of MILs

☛ systems supporting module interconnection include:

✆ Ada (package), Module (module)

highly modular and provide for version definitions

✆ Protel (PRocedure Oriented Type Enforcing Language)

implemented in 1975 by BNR

used extensively but mainly by BNR

based on compile-link-load paradigm

performs type checking across modules

✆ SCCS (Source Code Control System)

part of PWB (Programmer’s Work Bench) facility

by Bell Labs in 1973

a file storage system for recording various versions of a text file

supports creation of any revision of a source program or text

file protection against accidental changes

✆ SARA (System ARchitect’s Apprentice)

supports a structural multi-level requirements-driven methodology
for the design of reliable sw or hw digital systems

developed at UCLA in 1976 and under continual development

Lawrence Chung

Trend in Industry

❂ "buy, don’t build"
[Brooks, "No silver bullet: Essence and Accidents of Software Engineering",
Computer 20(4), pp. 10-19, Apr. 1987]

faster (reduced development time)
increased reliability
increased flexibility

❂ increasing component size and complexity

e.g1., TPS at GTE (1000 small, 50 large)

e.g2., F-22 fighter aircraft

aircraft-specific delays

process scheduler

UIM

navigation algorithms

dbms

OS

compilers

network mgmt system aircraft-specific delays

ballistic eqns for free-ball bombs ballistic eqns for free-ball bombs

process scheduler
navigation algorithms
UIM

network mgmt system
OS compilers

dbms

Lawrence Chung

Trend in Industry

❂ coordination among components

coordination infrastructure & standards for components plug-in

e.g., CORBA

❂ from subroutines to subsystems
["Component-based Software Development",
American Programmer 8(11), Nov. 1995]

❂ architecture specification as a deliverable

"If a project has not achieved a system architecture, including its rationale,

the project should not proceed to full-scale system development." [Boehm]

increasing importance of sw. architecture and specification

